综述

盘式制动系统摩擦动力学研究进展

  • 王靖岳 ,
  • 王同义 ,
  • 吕坤 ,
  • 王军年
展开
  • 1. 沈阳理工大学汽车与交通学院,沈阳 110159
    2. 吉林大学汽车仿真与控制国家重点实验室,长春 130025
王靖岳,教授,研究方向为车辆系统动力学与控制,电子信箱:abswell@126.com

收稿日期: 2022-01-09

  修回日期: 2022-03-06

  网络出版日期: 2023-06-26

基金资助

汽车仿真与控制国家重点实验室开放基金项目(20191203);辽宁省自然科学基金项目(2020-MS-216)

Research progress of friction dynamics of disc brake system

  • WANG Jingyue ,
  • WANG Tongyi ,
  • Lü Kun ,
  • WANG Junnian
Expand
  • 1. School of Automobile and Transportation, Shenyang Ligong University, Shenyang 110159, China
    2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China

Received date: 2022-01-09

  Revised date: 2022-03-06

  Online published: 2023-06-26

摘要

基于国内外关于盘式制动器的相关研究,总结了常用的盘式制动器动力学模型和盘式制动器振动研究方法,介绍了多种模型和研究方法的应用范围、优缺点等进行了。从优化制动器结构、改变制动器参数、主动控制等方面分析了制动摩擦噪声的控制措施,从不确定性条件下的研究方法、新材料、新技术等方面展望了盘式制动器的未来研究方向。

本文引用格式

王靖岳 , 王同义 , 吕坤 , 王军年 . 盘式制动系统摩擦动力学研究进展[J]. 科技导报, 2023 , 41(10) : 106 -114 . DOI: 10.3981/j.issn.1000-7857.2023.10.010

Abstract

Based on the relevant research literature of disc brake at home and abroad, this paper summarizes the commonly used disc brake models and brake noise research methods, and introduces the application range, advantages and disadvantages of the models and research methods. The control measures of brake friction noise are analyzed from the aspects of optimizing brake structure, changing brake parameters and active control. Finally, the future research direction of disc brake is prospected.

参考文献

[1] 王望予 . 汽车设计[M]. 4 版 . 北京: 机械工业出版社, 2004: 257
[2] Butlin T, Woodhouse J. A systematic experimental study of squeal initiation[J]. Journal of Sound and Vibration, 2011, 330(21): 5077-5095.
[3] Hartog J P D. Forced vibrations with combined coulomb and viscous friction[J]. Trans Asme, 1931, 53(9): 107-115.
[4] Bowden F P, Leben L. The nature of sliding and the analysis of friction[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1939, 169(938): 371-391.
[5] Stelter K P. Stick-slip vibrations and chaos[J]. Philosophical Transactions Physical Sciences & Engineering, 1990, 332(1624): 89-105.
[6] Hetzler H, Schwarzer D, Seemann W. Analytical investigation of steady-state stability and Hopf-bifurcations occurring in sliding friction oscillators with application to low-frequency disc brake noise[J]. Communications in Nonlinear Science & Numerical Simulation, 2007, 12(1): 83-99.
[7] Li Y, Feng Z C. Bifurcation and chaos in friction-induced vibration[J].Commmunicatins in Nonlinear Science and Numerical Simulation, 2004, 9(6): 633-647.
[8] Johannessen M K, Myrvold T. Stick-slip prevention of drill strings using nonlinear nodel reducation and nonlinear model predictive control[D]. South-Trondelag: Norwegian University of Science and Technology, 2010.
[9] 丁千, 翟红梅 . 机械系统摩擦动力学研究进展[J]. 力学进展, 2013, 43(1): 112-131.
[10] Shin K, Brenman M J, Oh J E, et al. Analysis of disc brake noise using a two degree of freedom model[J]. Journal of Sound and Vibration, 2002, 254(5): 837-848.
[11] Awerjcewicz J, Olejnik P. Friction pair modeling by a 2-dof system: Numerical and experimental investigations[J]. International Journal of Bifurcation and Chaos, 2005, 15(6): 1931-1944.
[12] 韩秋实, 许宝杰, 雷纪刚. 刹车装置摩擦噪声的动力学模型及理论分析[J]. 北京机械工业学院学报, 1999, 14(2): 1-5.
[13] Spurr R T. A theory of brake squeal[C]//Proceedings of the Automobile Division. London: Institution of Mechanical Engineers, 1961: 33-52.
[14] Sinou J J, Thouverez F, Jezequel L. Analysis of friction and instability by the centre manifold theory for a non-linear sprag-slip model[J]. Journal of Sound & Vibration, 2003, 265(3): 527-559.
[15] 张佳慧, 冯奇. Sprag_slip现象实验设计及初探[J]. 噪声与振动控制, 2008, 28(6): 92-96.
[16] 唐进元, 熊兴波, 陈思雨. 含干摩擦的二自由度制动系统颤振分析[J]. 振动与冲击, 2010, 29(3): 178-181.
[17] Beloiu D M, Ibrahim R A. Analytical and experimental investigations of disc brake noise using the frequency-time domain[J]. Structural Control & Health Monitoring, 2006, 13(1): 277-300.
[18] Ouyang H, Mottershead J E, Cartmell M P, et al. Friction-induced vibration of an elastic slider on a vibrating disc[J]. International Journal of Mechanical Sciences, 1999, 41(3): 325-336.
[19] Liang D S, Wang H J, Chen L W. Vibration and stability of rotating polar orthotropic annular disks subjected to a stationary concentrated transverse load[J]. Journal of Sound and Vibration, 2002, 250(5): 795-811.
[20] Li Z L, Ouyang H, Guan Z Q. Friction-induced vibration of an elastic disc and a moving slider with separation and reattachment[J]. Nonlinear Dynamics, 2017, 87(2): 1045-1067.
[21] 赵旖旎, 丁千 . 基于刚柔耦合模型的干摩擦制动系统振动分析[J]. 工程力学, 2016, 33(3): 222-231.
[22] Joe Y G, Cha B G, Sim H J, et al. Analysis of disc brake instability due to friction-induced vibration using a distributed parameter model[J]. International Journal of Automotive Technology, 2008, 9(2): 161-171.
[23] 贾尚帅, 丁千 . 刹车系统的摩擦自激振动和控制[J]. 工程力学, 2012, 29(3): 252-256.
[24] 李金录 . 摩擦制动系统的动力学降维和分析[D]. 天津:天津大学, 2013.
[25] Lee W K, Shin M W, Kim S H, et al. The influence of humidity on the sliding friction of brake friction material[J]. Wear, 2013, 302(1/2):1397-1403.
[26] Crowther A R, Singh R. Analytical investigation of stick-slip motions in coupled brake-driveline systems[J]. Nonlinear Dynamics, 2007, 50(3): 463-481.
[27] 何仁, 刘存香, 李楠. 轿车电磁制动与摩擦制动集成系统的模糊控制[J]. 机械工程学报, 2010, 46(24): 83-87.
[28] Hochlenert D. Nonlinear stability analysis of a disk brake model[J]. Nonlinear Dynamics, 2009, 58(1/2): 63-73.
[29] 蒋东鹰, 管迪华 . 用闭环耦合模型对盘式制动器制动尖叫的研究[J]. 清华大学学报(自然科学版), 1998, 38(8): 4-10.
[30] Yu J, Wang, Yong C et al. On the effect of friction law in closed-loop coupling disc brake model[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2016, 9(1):154-159.
[31] Gao P, Ruan J, Du Y, et al. The prediction of braking noise in regenerative braking system using closed-loop coupling disk brake model[J]. Proceedings of the Institution of Mechanical Engineers—Part D:Journal of Automobile Engineering, 2019, 125(1): 43-48.
[32] Jang H, Lee J S, Fash J W. Compositional effects of the brake friction material on creepgroan phenomena[J].Wear, 2001, 251(1/2): 1477-1483.
[33] 张立军, 张兴, 孟德建. 汽车制动颤振瞬态特性与关键因素试验研究[J]. 机械工程学报, 2018(24): 118-128.
[34] Eriksson M, Bergman F, Jacobson S. On the nature of tribological contact in automotive brakes[J]. Wear, 2002,
252(1/2): 26-36.
[35] Pan W J, Ling L Y, Qu H Y, et al. Analysis of complex modal instability of a minimal friction self-excited vibration system from multiscale fractal surface topography[J]. European Journal of Mechanics/A Solids, 2021, 87: 104226.
[36] Liles G D. Analysis of disc brake squeal using finite element methods[C]//SAE Noise & Vibration Conference &
Exposition. 1989.
[37] Nagy L I, Cheng J, Hu Y K. A New Method Development to Predict Brake Squeal Occurrence[C]//International Truck & Bus Meeting & Exposition. NewYork: Society of Automotive Engineers, 1994.
[38] Ouyang H, Li W, Mottershead J E. A moving-load model for disc-brake stability analysis[J]. Journal of Vibration and Acoustics, 2003, 125(1): 53-58.
[39] AbuBakar A R, Ouyang H. Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal[J]. International Journal of Vehicle Noise and Vibration, 2006, 2(2): 143-155.
[40] Dai Y, Lim T C. Suppression of brake squeal noise applying finite element brake and pad model enhanced by spectral-based assurance criteria[J]. Applied Acoustics, 2008, 69(3): 196-214
[41] Denimal E, Sinou J J, Nacivet S. Prediction and analysis of quasi-periodic solution for friction-induced vibration of an industrial brake system with the Generalized Modal Amplitude Stability Analysis[J]. Journal of Sound and Vibration, 2021, 506: 145-147.
[42] 吕红明, 张立军, 余卓平. 汽车盘式制动器尖叫研究进展[J]. 振动与冲击, 2011, 30(4): 1-7.
[43] 张立军, 刁坤, 孟德建, 等 . 摩擦引起的振动和噪声的研 究 现 状 与 展 望 [J]. 同 济 大 学 学 报 (自 然 科 学 版), 2013, 41(5): 765-772.
[44] Beloiu D M. Nonsmooth dynamics of disc brake systems and aeroelastic panels[D]. Detroit: Wayne State University, 2005.
[45] Culla A, Massi F. Uncertainty model for contact instability prediction[J]. The Journal of the Acoustical Society of America, 2009, 126(3): 1111-1119.
[46] Gu Y H, Liu Y C, Lu C D, et al. Brake noise reduction method based on Monte Carlo sampling and particle swarm optimization[J]. Shock and Vibration, 2021(5): 1-11.
[47] 张芳, 管迪华 . 抑制制动器振动噪声的阻尼方法的探讨[J]. 汽车工程, 2003, 25(3): 264-268.
[48] 侯俊, 过学迅 . 汽车盘式制动器阻尼降噪试验研究[J].武汉理工大学学报, 2009, 31(12): 72-74.
[49] Úradníček J, Musil M, Gašparovič U, et al. Influence of material-dependent damping on brake squeal in the specific disc brake system[J]. Applied Sciences, 2021, 11(6): 2625.
[50] Ataei M, Atai A A, Mirjavadi S, et al. Application of impulse damper in control of a chaotic friction-induced vibration[J]. Journal of Mechanical Science & Technology, 2011, 25(2): 279-285.
[51] 吴丹, 丁旺才 . 含干摩擦碰撞系统的簇发振荡及稳定性分析[J]. 华中科技大学学报(自然科学版), 2020, 48(3): 46-51.
[52] Papinniemi A. Vibro-acoustic studies of brake squeal noise[D]. Sydney: University of New South Wales, 2007.
[53] Li G F, Wu S P, Wang H P, et al. Global dynamics of a non-smooth system with elastic and rigid impacts and dry friction[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 95(2): 105603.
[54] 隋鑫, 丁千. 接触刚度对制动摩擦块时域-频域响应的影响[J]. 振动与冲击, 2019, 38(8): 198-202.
[55] 盛勇生, 马力, 孙国辉, 等 . 面向制动噪声的盘式制动器有限元复模态分析[J]. 机械设计与制造, 2007(11): 87-89.
[56] 詹斌, 孙涛, 沈炎武, 等 . 基于复特征值分析的某盘式制动器制动尖叫问题改进[J]. 振动与冲击, 2021, 40(5): 108-112.
[57] Denimal E, Sinou J J, Nacivet S, et al. Squeal analysis based on the effect and determination of the most influential contacts between the different components of an automotive brake system[J]. International Journal of Mechanical Sciences, 2019, 151: 192-213.
[58] 夏祖国, 龚洪, 史建鹏, 等 . 制动噪声改善方法分析研究[J]. 汽车技术, 2015(9): 9-12.
[59] 袁琼, 李仕生, 王国明, 等 . 通风筋结构对盘式制动器颤振尖叫行为影响的仿真分析[J]. 机械设计, 2020, 37(7): 36-44.
[60] 姚庆军, 马扎根, 吴昊, 等 . 用模态综合模型对制动器噪声进行模拟分析与抑制[J]. 汽车工程学报, 2021, 11(3): 221-227.
[61] Vasudevan B, Lenin N, Palanivel A, et al. Brake squeal analysis of disc brake[J]. Materials Today: Proceedings, 2021, 46(2): 112-120.
[62] Zhu Q, Chen G X, Wu B W, et al. Effect of the material parameter and shape of brake pads on friction-induced disc brake squeal of a railway vehicle[J]. Tribology Transactions, 2021, 64(2): 1-9.
[63] Osenin Y I, Krivosheya Y V, Chesnokov A V, et al. Influence of the mutual overlapping coefficient on the process of a disc brake squealing during braking[J]. Journal of Friction and Wear, 2021, 42: 38-43.
[64] Meehan P A, Leslie A C. On the mechanisms, growth, amplitude and mitigation of brake squeal noise[J]. Mechanical Systems and Signal Processing, 2021, 152: 33-39.
[65] Wei L, Cheung C S, Choy Y S, et al. Tribology performance, airborne particle emissions and brake squeal noise of copper-free friction materials[J]. Wear, 2020, 448/449: 203215.
[66] Ahlawat V, Yadav U, Nain S, et al. Potential of white ark shell powder in automotive brake friction composites[J]. Journal of Materials Engineering and Performance, 2021, 256: 4053-4062.
[67] 贾尚帅 . 若干非光滑系统动力学与应用非线性控制研究[D]. 天津: 天津大学, 2011.
[68] Budinsky T, Brooks P, Barton D. A new prototype system for automated suppression of disc brake squeal[J]. Proceedings of the Institution of Mechanical Engineers—Part D: Journal of Automobile Engineering, 2020, 235(5): 1423-1433.
[69] Sarrouy E, Dessombz O, Sinou J J. Piecewise polynomial chaos expansion with an application to brake squeal of a linear brake system[J]. Journal of Sound and Vibration, 2013, 332(3): 577-594.
[70] 吕辉, 于德介 . 基于区间分析的汽车盘式制动器的稳定性分析与改进[J]. 汽车工程, 2016, 38(3): 317-322.
[71] 曹云丽, 余毅权, 臧传相 . 新型铝合金材料制动盘热-结构耦合分析[J]. 机械制造与自动化, 2022, 51(1):164-167.
[72] 向晖, 全慧, 胡艺媛, 等 . 类石墨烯单层结构 ZnO 和 GaN 的压电特性对比研究[J]. 无机材料学报, 2021, 36(5): 492-496.
文章导航

/