[1] 陈楠纬 . 地下水污染修复技术研究进展[J]. 云南化工, 2019, 46(6): 1-5.
[2] 赵勇胜 . 地下水污染场地风险管理与修复技术筛选[J]. 吉林大学学报(地球科学版), 2012, 42(5): 1426-1433.
[3] U.S.EPA. Treatment technologies for site cleanup: annual status report[M]. Washington D C: National Service Center for Environmental Publications, 2007.
[4] 梁竞, 王世杰, 张文毓, 等. 美国污染场地修复技术对我国修复行业发展的启示[J]. 环境工程, 2021, 39(6): 173-178.
[5] 朱辉, 叶淑君, 吴吉春, 等. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘, 2021, 28(5): 26-34.
[6] 宋家音, 赵玲, 滕应, 等. 污染场地采样调查技术与设备研究进展[J]. 土壤, 2021, 53(3): 468-474.
[7] 郑斯瑞. 污染场地修复决策中存在的问题及解决思路研究[J]. 绿色环保建材, 2020(11): 50-51.
[8] 廖晓勇, 陶欢, 阎秀兰, 等. 污染场地修复决策支持系统的几个关键问题探讨[J]. 环境科学, 2014, 35(4): 1576-1585.
[9] van Drunen M A, Beinat E, Nijboer M, et al. Multi-objective decision making for soil remediation problems[J]. Land Contamination&Reclamation, 2005, 13(4): 349-359.
[10] 何理, 李晶, 任丽霞, 等 . 地下水环境修复工艺优化设计研究进展[J]. 水资源保护, 2014, 30(3): 1-4,18.
[11] James S C, Kovalick Jr. W W. Evaluation of demonstrated and emerging technologies for the treatment and clean-up of contaminated land and groundwater[J]. Land Contamination & Reclamation, 2002, 10(4): 239-245.
[12] U. S. EPA. Superfund green remediation strategy[R]. Washington D.C.: U.S.EPA, 2010.
[13] Critto A, Cantarella L, Carlon C, et a1. Decision support-oriented selection of remediation technologies to rehabilitate contaminated sites[J]. Integration Environment Assessment Management, 2006, 2(3): 273-285.
[14] Bello-dambatta A, Farmani R, Javadi A A, et al. The analytical hierarchy process for contaminated land management[J]. Advanced Engineering Informatics, 2009, 23(4): 433-441.
[15] 张红振, 骆永明, 章海波, 等 . 基于 REC 模型的污染场地修复决策支持系统的研究[J]. 环境污染与防治, 2011, 33(4): 66-70, 94.
[16] 张海博, 张林波, 李岱青, 等 . 基于 DESYRE 模型的污染场地修复决策研究[J]. 环境工程技术学报, 2012, 2(4): 339-348.
[17] 张红振, 於方, 曹东, 等 . 发达国家污染场地修复技术评估实践及其对中国的启示[J]. 环境污染与防治, 2012, 34(2): 105-111.
[18] 孟祥帅, 陈鸿汉, 何亚平, 等 . 污染场地修复技术方案筛选中环境指标建立初探: 以某废弃焦化厂为例[J]. 环境工程, 2021, 39(2): 153-159.
[19] 张永祥, 王晋昊, 井琦, 等 . 地下水修复中纳米零价铁材料制备及应用综述[J]. 化工进展, 2021, 40(8): 4486-4496.
[20] 王国华, 杨思芹, 周耀辉, 等 . 生物还原法修复铀污染地下水的研究进展[J]. 环境科学与技术, 2019, 42(8): 47-53.
[21] 黄文建, 陈芳, 么强, 等 . 地下水污染现状及其修复技术研究进展[J]. 水处理技术, 2021, 47(7): 12-18.
[22] 李军, 梁永平, 邹胜章, 等 . 微生物在地下水污染修复中的应用研究进展[J]. 环境污染与防治, 2021, 43(5): 638-643.
[23] 袁梦姣, 王晓慧, 赵芳, 等 . 零价铁与微生物耦合修复地下水的研究进展[J]. 中国环境科学, 2021, 41(3): 1119-1131.
[24] 任加国, 郜普闯, 徐祥健, 等 . 地下水氯代烃污染修复技术研究进展[J]. 环境科学研究, 2021, 34(7): 1641-1653.
[25] O'connor D, Hou D Y, Ok Y S, et al. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review[J]. Journal of Controlled Release, 2018, 283: 200-213.
[26] Pierro L, Matturro B, Rossetti S, et al. Polyhydroxyalkanoate as a slow-release carbon source for in situ bioremediation of contaminated aquifers: From laboratory investigation to pilot-scale testing in the field[J]. New Biotechnology, 2017, 37: 60-68.
[27] Zhang P, van Nostrand J D, He Z, et al. A slow-release substrate stimulates groundwater microbial communities for long-term in situ Cr(VI) reduction[J]. Environmental Science & Technology, 2015, 49(21): 12922-12931.
[28] 王茜 . 基于刺激土著微生物降解地下水中芳香烃的无机盐缓释修复药剂研究[D]. 长春: 吉林大学, 2021.
[29] 尹斯琦 . 基于生物刺激修复 VCHs 污染地下水的营养基质缓释药剂研究[D]. 长春: 吉林大学, 2021.
[30] 文一, 赵丹 . 发达国家地下水修复技术现状及对我国的启示[J]. 环境保护科学, 2016, 42(5): 12-14,18.
[31] Saaty T L. A scaling method for priorities in hierarchical structures[J]. Journal of Mathematical Psychology, 1977, 15(3): 234-281.
[32] 廉新颖, 杨昱, 席北斗, 等 . 地下水污染修复技术验证评价方法研究[J]. 环境科学研究, 2018, 31(10): 1743-1750.
[33] 杜岳, 贾建和 . 污染场地修复技术筛选方法研究[J]. 河北工业科技, 2015, 32(5): 401-406.
[34] 刘国 . 四川省典型矿山地下水污染因子识别与修复技术筛选[D]. 成都: 成都理工大学, 2015.
[35] 白利平, 罗云, 刘俐, 等 . 污染场地修复技术筛选方法及应用[J]. 环境科学, 2015, 36(11): 4218-4224.
[36] 潘文, 王鹤立 . 层次分析法在污染场地修复技术优选中的应用[J]. 环境科学与技术, 2012, 35(增刊 2): 322-326.
[37] Hwang C L, Yoon K. Methods for multiple attribute decision making[J]. Multiple Attribute Decision Making, 1981, 186: 58-191.
[38] 张倩, 蒋栋, 谷庆宝, 等. 基于AHP和TOPSIS的污染场地修复技术筛选方法研究[J]. 土壤学报, 2012, 49(6): 1088-1094.
[39] Li J, Yang Y, Huan H, et al. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment[J]. Science of the Total Environment, 2016, 551-552(15): 143-154.
[40] 张婧, 皮鎏, 崔佳鑫, 等 . 垃圾填埋场区域氨氮污染地下水的修复方案比选[J]. 环境保护科学, 2017, 43(3): 125-131.
[41] Wang H, Cai Y, Tan Q, et al. Evaluation of groundwater remediation technologies based on fuzzy multi-criteria decision analysis approaches[J]. Water, 2017, 9(6): 443.
[42] 罗云 . 基于 Topsis 的污染场地土壤修复技术筛选方法及应用研究[D]. 上海: 上海师范大学, 2013.
[43] 魏建洲, 马国顺. 一种关于ELECTRE-II法的新排序方法[J]. 云南民族大学学报(自然科学版), 2009, 18(2): 129-131.
[44] 王寅, 顾小刚, 缪周伟, 等 . 污染场地地下水修复技术筛选方法综述[J]. 中国市政工程, 2018(5): 25-27, 104-105.
[45] 王冰, 陈伏龙, 吴泽斌, 等. 基于ELECTRE Ⅲ法的引滦水量分配组织实施评估[J]. 水文, 2017, 37(2): 42-47.
[46] Souza R B, Martins F C, Pereira V, et al. An algorithm to elicitate ELECTRE II, III and IV parameters[J]. Data Technologies and Applications, 2020, 55(1): 82-96.
[47] Roussat N, Dujet C, Méhu J. Choosing a sustainable demolition waste management strategy using multicriteria decision analysis[J]. Waste Management, 2009, 29(1): 12-20.
[48] Figueira J, Greco S, Ehrgott M. Multiple criteria decision analysis: State of the art surveys[M]. New York: Springer New York, 2005, 78.
[49] 张士宽, 王月, 安达, 等 . 垃圾填埋场地下水污染修复技术优选研究[J]. 环境工程技术学报, 2017, 7(4): 463-469.
[50] 尉晓君 . 地下水污染修复的多目标决策研究[D]. 湖南:湖南大学, 2006.
[51] An D, Xi B, Ren J, et al. Sustainability assessment of groundwater remediation technologies based on multicriteria decision making method[J]. Resources, Conservation and Recycling, 2017, 119: 36-46.
[52] 张伯强, 安达, 王月, 等 . 基于 MCDA 的沙漠地区污染场地地下水修复技术优化方法[J]. 环境工程学报, 2016, 10(10): 5521-5527.
[53] Brans J P, Vincke P H, Mareschal B. How to select and how to rank projects: The PROMETHEE method[J]. European Journal of Operational Research, 1986, 24(2): 228-238.
[54] 张飞, 岳立柱, 王国辉. 基于偏序集的PROMETHEE方法优化研究[J]. 运筹与管理, 2020, 29(1): 10-16.
[55] 李玮, 王明玉, 韩占涛, 等 . 棕地地下水污染修复技术筛选方法研究——以某废弃化工厂污染场地为例[J]. 水文地质工程地质, 2016, 43(3): 131-140.
[56] Khelifi O, Lodolo A, Vranes S, et al. A web-based decision support tool for groundwater remediation technologies selection[J]. Journal of Hydroinformatics, 2006, 8(2): 91-100.
[57] 李安婕, 全向春, 王龑, 等 . 基于 PROMETHEEⅡ法的污染场地土壤修复技术筛选及应用[J]. 环境工程学报, 2012, 6(10): 3767-3773.
[58] 鄂佳楠, 周睿, 郑龙日, 等 . 基于蒙特卡罗法和层次分析法的污染场地地下水修复技术筛选方法研究[J]. 环境污染与防治, 2017, 39(5): 499-503, 509.
[59] 冯茂 . 基于 PROMETHEE 和 GAIA 方法的石油污染地下水修复系统多目标决策研究[D]. 北京: 华北电力大学, 2014.
[60] Ren L, Lu H, He L, et al. Identifying desired groundwater remediation strategies by using PROMETHEE and GAIA methods[C]//International Conference on Material Science and Environmental Engineering (ICMSEE2015), Wuhan: Taylor & Francis Group, 2015: 645-647.
[61] 任丽霞 . 地下水修复多属性决策分析方法与应用研究[D]. 北京: 华北电力大学, 2017.
[62] He L, Shao F, Ren L. Identifying optimal groundwater remediation strategies through a simulation-based PROMETHEE-TOPSIS approach: An application to a naph⁃thalene-contaminated site[J]. Human and Ecological Risk Assessment, 2020, 26(6): 1550-1568.
[63] 邵峰 . 不确定条件下的石油污染地下水修复系统多属性决策分析[D]. 北京: 华北电力大学, 2017.
[64] Finnveden G, Hauschild M Z, Ekvall T, et al. Recent developments in life cycle assessment[J]. Journal of Environmental Management, 2009, 91(1): 1-21.
[65] Lemming G, Hauschild M Z, Chambon J, et al. Environmental impacts of remediation of a trichloroethene-contaminated site: Life cycle Assessment of remediation alternatives[J]. Environmental Science & Technology, 2010, 44(23): 9163-9169.
[66] Jolliet O, Margni M, Charles R, et al. IMPACT 2002+: A new life cycle impact assessment methodology[J]. The International Journal of Life Cycle Assessment, 2003, 8(6): 324-330.
[67] Environmental management-life cycle assessment-principles and framework[S]. British: ISO, 2006.
[68] Suèr P, Nilsson-Påledal S, Norrman J. LCA for site remediation: A literature review[J]. Soil Sediment Contamination, 2005, 13(4): 415-425.
[69] 胡新涛, 朱建新, 丁琼. 基于生命周期评价的多氯联苯污染场地修复技术的筛选[J]. 科学通报, 2012, 57(增刊1): 129-137.
[70] Fisher A. Life-cycle assessment of in situ thermal remediation[J]. Remediation Journal, 2012, 22(4): 75-92.
[71] Santiago D E, Hernndez rodrguez M J, Pulido-melin E. Laundry wastewater treatment: Review and life cycle assessment[J]. Journal of Environmental Engineering, 2021, 147(10): 1-23.
[72] Seo Y, Suzuki M, Takagi T, et al. Life-cycle assessment of adsorbents for biohydrogen production[J]. Resources, 2019, 8(1): 52.
[73] Godin J, Ménard J F, Hains S, et al. Combined use of life cycle assessment and groundwater transport modeling to support contaminated site management[J]. Human and Ecological Risk Assessment: An International Journal, 2004, 10(6): 1099-1116.
[74] Cadotte M, Deschênes L, Samson R. Selection of a remediation scenario for a diesel-contaminated site using LCA[J]. The International Journal of Life Cycle Assessment, 2007, 12(4): 239-251.
[75] 董璟琦 . 污染场地绿色可持续修复评估方法及案例研究[D]. 北京: 中国地质大学, 2019.
[76] 陈刚, 蓝艳, 彭宁, 等 . 成本效益分析的美国经验与环保实践[J]. 环境保护, 2016, 44(12): 62-64.
[77] 牛坤玉, 金书秦 . 成本效益分析视角的土壤修复方案筛选——英国经验及启示[J]. 环境保护, 2018, 46(18):24-28.
[78] 赵丹, 於方, 王膑. 环境损害评估中修复方案的费用效益分析[J]. 环境保护科学, 2016, 42(6): 16-22.
[79] Döberl G, Ortmann M, Frühwirth W. Introducing a goaloriented sustainability assessment method to support decision making in contaminated site management[J]. Environmental Science & Policy, 2013, 25: 207-217.
[80] 靳超, 左锐, 王金生, 等 . 傍河污染场地地下水修复技术筛选[J]. 北京师范大学学报(自然科学版), 2017, 53(6): 689-697.
[81] Xu F L, Zhao S S, Dawson R W, et al. A triangle model for evaluating the sustainability status and trends of economic development[J]. Ecological Modelling, 2006, 195(3/4): 327-337.
[82] Sun W Q, Sun Y J, Zhu H, et al. Catalytic activity and evaluation of Fe-Mn@Bt for ozonizing coal chemical biochemical tail water[J]. Separation Purification Technology, 2020: 116524.
[83] Song D B, Gao Z Q, Zhang H, et al. GIS-based health assessment of the marine ecosystem in Laizhou Bay, China[J]. Marine Pollution Bulletin, 2017, 125(1/2): 242-249.
[84] 周文武, 陈冠益, 旦增, 等 . 垃圾填埋场区域地下水铅的修复方案比选:以拉萨市为例[J]. 环境工程, 2020, 38(6): 88-93.