[1] Nguyen H P, Mi J P, Sang B K, et al. Effective dielectric barrier discharge reactor operation for decomposition of volatile organic compounds[J]. Journal of Cleaner Production, 2018, 198: 1232-1238.
[2] 代雪萍, 王焱, 谢晓峰, 等. 挥发性有机物治理技术研究现状[J]. 材料工程, 2020, 48(11): 8.
[3] Zhang G , Liu Y, Zheng S, et al. Adsorption of volatile organic compounds onto natural porous minerals[J]. Journal of Hazardous Materials, 2019, 364: 317-324.
[4] 叶代启, 刘锐源, 田俊泰 . 我国挥发性有机物排放量变化趋势及政策研究[J]. 环境保护, 2020(15): 23-26.
[5] 盛楠, 魏周好胜, 陈明功, 等. 喷漆废气处理技术研究进展[J]. 化工进展, 2017, 36(4): 1434-1447.
[6] 梁小明, 孙西勃, 徐建铁, 等. 中国工业源挥发性有机物排放清单[J]. 环境科学, 2020, 41(11): 6-14.
[7] 刘忠生, 王海波, 王新, 等 . 炼油厂储罐 VOCs 和恶臭治理新技术[J]. 炼油技术与工程, 2018, 48(6): 60-64.
[8] Tan Z, Lu K, Jiang M, et al. Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity[J]. Science of the Total Environment, 2018, 636: 775-786.
[9] Liu X, Chen Y, Zeng S, et al. Structure optimization of tailored ionic liquids and process simulation for shale gas separation[J]. AIChE Journal, 2020, 66(2): 18.
[10] Alfredo-Santiago R C, Pierre-François B, Solène Guihéneuf, et al. Assessment of VOC absorption in hydrophobic ionic liquids: Measurement of partition and diffusion coefficients and simulation of a packed column[J]. Chemical Engineering Journal, 2019, 360: 1416-1426.
[11] Wang W, Ma X, Grimes S, et al. Study on the absorbability, regeneration characteristics and thermal stability of ionic liquids for VOCs removal[J]. Chemical Engineering Journal, 2017, 328: 353-359.
[12] Xu R N, Dai C G, Mu M L, et al. Highly efficient capture of odorous sulfur-based VOCs by ionic liquids[J].Journal of Hazardous Materials, 2021, 402: 123507.
[13] Chen C C, Huang Y H, Huang S M, et al. Hydrophobic deep eutectic solvents as attractive media for low-concentration hydrophobic VOC capture[J]. Chemical Engineering Journal, 2021, 424: 130420.
[14] 庄瑞杰, 于庆君, 唐晓龙, 等 . 介孔硅基分子筛吸附去除挥发性有机化合物的研究进展[J]. 材料导报, 2020, 34(15): 15013-15020.
[15] Li X, Zhang L, Yang Z, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology, 2020, 235: 116213.
[16] Zhu L, Shen D, Luo K H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods[J]. Journal of Hazardous Materials, 2020, 389: 122102.
[17] Yang C, Guo M, Pi Y, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153.
[18] Hou B, Zhao Y, Sun W, et al. Glycine based modification of activated carbons for VOCs adsorption[J]. Chemical Engineering Journal Advances, 2021, 7: 100126.
[19] Liu J, Shi N, Wang T, et al. Significant enhancement of VOCs conversion by facile mechanochemistry coupled MnO2 modified fly ash: Mechanism and application[J]. Fuel, 2021, 304: 121443.
[20] 沈永烜 . 咪唑类离子液体改性聚偏氟乙烯膜制备及其对制药废水中 VOCs 分离研究[D]. 扬州: 扬州大学, 2021.
[21] Abraham J, Jose T, Moni G, et al. Ionic liquid modified multiwalled carbon nanotube embedded styrene butadiene rubber membranes for the selective removal of toluene from toluene/methanol mixture via pervaporation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 95: 594-601.
[22] Vopicka O, Moravkova L, Vejrazka J, et al. Ethanol sorption and permeation in fluoropolymer gel membrane containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid[J]. Chemical Engineering and Processing-Process Intensification, 2015, 94: 72-77.
[23] Yi S, Wan Y. Volatile organic compounds (VOCs) recovery from aqueous solutions via pervaporation with vinyltriethoxysilane-grafted-silicalite-1/polydimethylsiloxane mixed matrix membrane[J]. Chemical Engineering Journal, 2017, 313: 1639-1646.
[24] Kamal M S, Razzak S A, Hossain M M. Catalytic oxidation of volatile organic compounds (VOCs)-A review[J].Atmospheric Environment, 2016, 140: 117-134.
[25] 户英杰, 王志强, 程星星, 等 . 燃烧处理挥发性有机污染物的研究进展[J]. 化工进展, 2018, 37(1): 319-329.
[26] 李长英, 陈明功, 盛楠, 等 . 挥发性有机物处理技术的特点与发展[J]. 化工进展, 2016, 35(3): 917-925.
[27] Lü L, Wang S, Ding Y, et al. Mechanistic insights into the contribution of Lewis acidity to brominated VOCs combustion over titanium oxide supported Ru catalyst[J]. Chemosphere, 2021, 263: 128112.
[28] Zhang Z X, Jiang Z, Wen F, et al. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review[J]. Catalysis Today, 2016, 264: 270-278.
[29] Liu G, Tian Y, Zhang B, et al. Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation[J]. Journal of Hazardous Materials, 2019, 367: 568-576.
[30] Dong F, Han W G, Guo Y, et al. CeCoOx-MNS catalyst derived from three-dimensional mesh nanosheet Co-based metal-organic frameworks for highly efficient catalytic combustion of VOCs-ScienceDirect[J]. Chemical Engineering Journal, 2020, 405: 126948.
[31] Han F, Li M, Zhong H, et al. Product analysis and mechanism of toluene degradation by low temperature plasma with single dielectric barrier discharge[J]. Journal of Saudi Chemical Society, 2020, 24(9): 673-682.
[32] Zhang Q, Xie L, Lu J, et al. Catalytic removal of gaseous styrene using DBD combined with NiO/Pyrite composite[J]. Solid State Sciences, 2020, 102: 106167.
[33] Wu K, Sun Y, Liu J, et al. Nonthermal plasma catalysis for toluene decomposition over BaTiO3-based catalysts by Ce doping at A-sites: The role of surface-reactive oxygen species[J]. Journal of Hazardous Materials, 2021, 405: 124156.
[34] Zhou L L, Shen Z Z, Wang S B, et al. Construction of quantum-scale catalytic regions on anatase TiO2 nanoparticles by loading TiO2 quantum dots for the photocatalytic degradation of VOCs[J]. Ceramics International, 2021, 47: 21090-21098.
[35] Mahmood A, Shi G S, Wang Z, et al. Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: An experimental and DFT studies of adsorption and electronic structure of the interface-ScienceDirect[J]. Journal of Hazardous Materials, 2020, 401: 123402.
[36] Han M F, Wang C, Yan F. Treatment of hydrophobic volatile organic compounds using two-liquid phase biofilters[J]. Science of the Total Environment, 2018, 641(1): 1447-1454.
[37] Prikyai K, Watsuntorn W, Rene E R, et al. Performance of an air membrane bioreactor for methanol removal under steady and transient state conditions[J]. Chemosphere, 2020, 260: 127514.
[38] Rolewicz-Kalińska A, Lelicińska-Serafin K, Manczarski P. Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process[J]. Chemical Engineering Research and Design, 2021, 165: 69-80.
[39] Dewidar A A, Sorial G A. Effect of surfactin on removal of semi-volatile organic compound: Emphasis on enhanced biofiltration performance[J]. Environmental Research, 2020, 193(8): 110532.
[40] 武宁, 杨忠凯, 李玉, 等 . 挥发性有机物治理技术研究进展[J]. 现代化工, 2020, 40(2): 17-22.
[41] Wantz E, Kane A, Lhuissier M, et al. A mathematical model for VOCs removal in a treatment process coupling absorption and biodegradation[J]. Chemical Engineering Journal, 2021, 423: 130106.
[42] Saoud W A, Assadi A A, Kane A, et al. Integrated process for the removal of indoor VOCs from food industry manufacturing: Elimination of Butane-2, 3-dione and Heptan-2-one by cold plasma-photocatalysis combination[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 386: 112071.