专题:环境污染与绿色发展

Plackett-Burman设计联合Box-Behnken响应面法优化改性生物炭对亚甲基蓝的吸附工艺

  • 李欢欢 ,
  • 李海红 ,
  • 吴丹萍
展开
  • 1. 西安工程大学环境与化学工程学院,西安 710048
    2. 陕西西咸新区泾河新城水务有限公司,西安 710048
李欢欢,硕士研究生,研究方向为工业废水处理,电子信箱:1421696305@qq.com

收稿日期: 2022-04-18

  修回日期: 2023-01-12

  网络出版日期: 2023-06-29

基金资助

陕西省科技厅社会发展领域项目(2020SF-435);榆林市科技计划项目(CXY-2020-054)

Optimize the adsorption process of methylene blue by modified biochar

  • LI Huanhuan ,
  • LI Haihong ,
  • WU Danping
Expand
  • 1. College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
    2. Shaanxi Xixian New Area Jinghe Xincheng Water Affairs Co., Xi'an 710048, China

Received date: 2022-04-18

  Revised date: 2023-01-12

  Online published: 2023-06-29

摘要

以柠檬酸改性辣椒秸秆基生物炭为对象,研究其对亚甲基蓝吸附过程的最优工艺。以改性炭投加量、亚甲基蓝浓度、吸附时间、温度、溶液 pH值、摇床转速为考察因素,亚甲基蓝吸附量为考察指标,利用 Plackett-Burman(P-B)设计筛选出具有显著效应的因素,进一步结合 Box-Behnken Design(BBD)响应面法对显著性因素进行优化,并加以验证分析,得到最佳吸附工艺参数。结果表明:在选定的6个因素中,影响亚甲基蓝吸附量的显著性顺序为改性炭投加量>亚甲基蓝浓度>摇床转速;优化后最佳吸附条件是:改性炭投加量为45.40 mg、亚甲基蓝浓度为 86 mg/L、摇床转速为 130 r/min,在该条件下亚甲基蓝吸附量可达 41.03 mg/g。经验证,与模型预测值 42.24 mg/g相差 2.87%,因此 P-B/BBD 法在优化改性生物炭吸附亚甲基蓝的工艺中稳定有效,为优化炭材料的吸附工艺提供了数据参考。

本文引用格式

李欢欢 , 李海红 , 吴丹萍 . Plackett-Burman设计联合Box-Behnken响应面法优化改性生物炭对亚甲基蓝的吸附工艺[J]. 科技导报, 2023 , 41(11) : 80 -88 . DOI: 10.3981/j.issn.1000-7857.2023.11.008

Abstract

Taking citric acid-modified pepper straw-based biochar as the object, an optimal process for the adsorption process of methylene blue was studied. The dosage of modified carbon, methylene blue concentration, adsorption time, temperature, solution pH, and shaker speed were taken as investigation factors and methylene blue adsorption as investigation index, the Plackett-Burman (P-B) design was used to screen out the factors of significant effects. And further combined with the Box-Behnken Design (BBD) response surface method, the significant factors were optimized and verified and analyzed to obtain the optimal adsorption process parameters. The results showed that among the selected 6 factors, the order of significance affecting the adsorption capacity of methylene blue was modified carbon dosage > methylene blue concentration > shaking table rotation speed. The interaction effect between the significant factors was as follows: dosage of modified carbon and rotating speed of shaking table > dosage of modified carbon and concentration of methylene blue > concentration of methylene blue and rotating speed of shaking table. After optimization, the optimum adsorption conditions were obtained as follows: the dosage of modified carbon was 45.40 mg, the concentration of methylene blue was 86.00 mg/L, and the rotating speed of the shaking table was 130 r/min. Under these conditions, the adsorption capacity of methylene blue could reach 41.03 mg/g, the difference between the verified value and the model predicted value of 42.24 mg/g was 2.87%, therefore, the P-B/BBD method is stable and effective in optimizing the adsorption process of modified biochar for methylene blue, which provides a data reference for optimizing the adsorption process of carbon materials.

参考文献

[1] 鞠雪敏, 罗莉涛, 张鸿涛, 等. 染料行业废水无害化处理技术现状及发展趋势[J]. 科技导报, 2021, 39(17): 45-54.
[2] 李石雄, 黄元浩, 蓝海军, 等. 生物质吸附废水中亚甲基蓝的研究综述[J]. 广东化工, 2021, 48(16): 117-119.
[3] 任哲仪. 磁性壳聚糖改性生物炭的制备及其去除水中铜和亚甲基蓝[D]. 哈尔滨: 东北农业大学, 2021.
[4] 王泽华, 张珂, 李阳, 等. 酯化改性丝瓜络对亚甲基蓝废水的吸附性能研究[J]. 郑州航空工业管理学院学报, 2022, 40(3): 87-90.
[5] Xu N, Gu Q Y, Du J J, et al. Anti reduction, anti aggregation and anti DNA interference photodynamic therapy carbon dots based on methylene blue[J]. Science China(Materials), 2021, 64(9): 2325-2336.
[6] 周桂娴, 马荣荣, 杨宗英, 等 . 扑草净、辛硫磷和亚甲基蓝制剂对凡纳滨对虾的急性毒性及组织病理改变[J]. 生态毒理学报, 2021, 15(6): 279-289.
[7] Attallah O A, Mamdouh W. Development and optimization of pectin chitosan magnetic sponge for efficient cationic dyes removal using Box-Behnken design[J]. International Journal of Environmental Science and Technology, 2021, 18(1): 131-140.
[8] 李铭哲, 郑水林, 孙志明, 等. 含石灰水热条件下硅藻土微结构演化及其对亚甲基蓝吸附性能的影响[J]. 硅酸盐学报, 2020, 48(4): 567-576.
[9] 王晶, 韩巧宁, 雷以廷, 等. 一步法制备富氧木质素活性炭及其亚甲基蓝吸附性能[J]. 化工学报, 2021, 72(5): 2826-2836.
[10] 王志增, 李通, 赵秦仪, 等 . 托贝莫来石改性及其对亚甲基蓝(MB)的吸附性能[J]. 硅酸盐学报, 2021, 49(6): 1-10.
[11] 阙爱珍, 朱桃玉, 郑玉婴. 中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能[J]. 材料研究学报, 2021, 35(7): 517-525.
[12] Sriprom P, Krusong W, Assawasaengrat P. Preparation of activated carbon from durian rind with difference activations and its optimization[J]. Journal of Renewable Materials, 2021, 9(2): 311.
[13] Wang J, Wang S. Preparation, modification and environmental application of biochar: A review[J]. Journal of Cleaner Production, 2019, 227: 1002-1022.
[14] 田雨, 刘晓刚, 赵玉, 等 . 稻壳炭制备工艺参数对吸附性能的影响[J]. 农业工程学报, 2020, 36(24): 211-217.
[15] 温俊峰, 刘侠, 马向荣, 等 . 沙柳基磁性多孔炭的制备及其吸附亚甲基蓝性能研究[J]. 功能材料, 2020, 36(24): 211-217.
[16] Thitipone S, Naeem H, Suchada C, et al. Facile synthesis of corncob biochar via in-house modified pyrolysis for removal of methylene blue in wastewater[J]. Materials Research Express, 2020, 7(1): 1-10.
[17] Biswas S, Bal M, Behera S K, et al. Process optimization study of Zn2+ adsorption on biochar-alginate composite adsorbent by response surface methodology (RSM) [J].Water, 2019, 11(2): 325.
[18] Phuengjayaem S, Tanasupawat S, Teeradakorn S. Optimization of succinic acid production by actinobacillus sp. NP9-aA7 using Plackett-Burman design coupled with Box-Behnken design[J]. Chiang Mai Journal of Science, 2018, 45(4): 1649-1666.
[19] Iberahim N, Sethupathi S, Bashir M J K, et al. Evaluation of oil palm fiber biochar and activated biochar for sulphur dioxide adsorption[J]. Science of the Total Environment, 2022, 805: 150421.
[20] 安攀宇, 汪静心, 肖岚, 等 . Plackett-Burman 试验设计联用 Box-Behnken 响应面法优化脂肪替代物的制备[J]. 食品科学, 2020, 41(10): 255-264.
[21] Xia M, Meng Y, Yan H, et al. Plackett-Burman combined with Box-Behnken to optimize the medium of fermented tremella polysaccharide and compare the characteristics before and after optimization[J]. Journal of Food Quality, 2020, 40(20): 136-143.
[22] 张小雯, 孙敬蒙, 汪卓明, 等 . Plackett-Burman 联用 Box-Behnken 响应面法优化马来酸桂哌齐特脂质体的制备及表征[J]. 医药导报, 2021, 40(2): 240-247.
[23] 赵玉荣, 张乐, 郭佳慧, 等 . Plackett-Burman 设计结合响应面法优化苦参中氧化苦参碱提取工艺[J]. 广州化工, 2021, 49(9): 73-76.
[24] 李红艳, 李海红, 殷亚豪, 等 . 辣椒秸秆基活性炭电极材料的优化制备及表征[J]. 陕西科技大学学报, 2019, 37(4): 107-113.
[25] 张金辉, 李娟, 张强, 等 . 柠檬酸改性花生壳对水中重金属 Cu、Pb、Cd 和 Cr 的吸附特性研究[J]. 应用化工, 2017, 46(3): 485-489.
[26] 郭俊元, 甘鹏飞, 陈诚, 等 . 磁性壳聚糖的制备及处理亚甲基蓝废水[J]. 中国环境科学, 2019, 39(6): 2422-2430.
[27] 李荣华, 李满林, 张增强, 等 . 柠檬酸改性桔皮对水中甲基蓝的吸附[J]. 西北农林科技大学学报(自然科学版), 2009, 37(10): 173-180.
[28] 罗路, 罗凌聪, 邓剑平, 等 . 响应面优化设计棕榈壳活性炭的制备及储氢性能研究[J]. 林产化学与工业, 2021, 41(4): 92-100.
[29] Huang B F, Shi Z, Cai M, et al. Mechanism of coconut husk activated carbon modified by Mn(NO3)2[J]. Journal of Southeast University (English Edition), 2020, 36(4): 475-482.
文章导航

/