论文

基于连续-非连续单元法的预应力斜拉桥桥面板裂缝成因分析

  • 甘建锋 ,
  • 钟运平 ,
  • 饶法强 ,
  • 秦凯强 ,
  • 曹汝洋 ,
  • 张一鸣
展开
  • 1. 广州大广高速公路有限公司,广州 510900
    2. 中交公路长大桥建设国家工程研究中心有限公司,北京 100088
    3. 河北工业大学土木与交通学院,天津 300401
甘建锋,工程师,研究方向为公路桥梁工程建设与管理,电子信箱:1071368518@qq.com

收稿日期: 2022-09-27

  修回日期: 2022-11-17

  网络出版日期: 2023-06-29

基金资助

国家自然科学基金项目(52178324)

Cause analysis of cracks in prestressed cable-stayed bridges with CDEM

  • GAN Jianfeng ,
  • ZHONG Yunping ,
  • RAO Faqiang ,
  • QIN Kaiqiang ,
  • CAO Ruyang ,
  • ZHANG Yiming
Expand
  • 1. Guangzhou Daguang Expressway Co., Ltd., Guangzhou 510900, China
    2. National Engineering Research Center for China Highway Bridge Construction Co., Ltd., Beijing 100088, China
    3. School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China

Received date: 2022-09-27

  Revised date: 2022-11-17

  Online published: 2023-06-29

摘要

预应力斜拉桥受到多种荷载及温度作用从而容易出现裂缝。传统的有限元方法不能精准刻画裂缝的产生与扩展,基于连续-非连续单元法,结合多物理场耦合对预应力桥面板展开数值模拟,对当前裂缝成因、长期演化进行了分析。结果表明:桥面板自身重力、拉索索力及桥梁弯直程度不是构成桥梁出现裂缝的主要原因,同时钢筋预应力在一定程度上有阻碍裂缝开展的作用;温度长期循环作用对桥面板初始裂缝起主导作用,后期车辆动荷载反复加载使初始裂缝进一步扩展。

本文引用格式

甘建锋 , 钟运平 , 饶法强 , 秦凯强 , 曹汝洋 , 张一鸣 . 基于连续-非连续单元法的预应力斜拉桥桥面板裂缝成因分析[J]. 科技导报, 2023 , 41(11) : 113 -124 . DOI: 10.3981/j.issn.1000-7857.2023.11.012

Abstract

Prestressed cable-stayed bridges are prone to crack due to various loads and temperatures. The traditional finite element method can not accurately describe the generation and expansion of cracks. In this paper, numerical simulation of a prestressed bridge panel is carried out to analyze the origin and long-term evolution of cracks based on the continuousdiscontinuous element method and multi physical field coupling. The results show that the gravity of the bridge panel itself, the cable force and the degree of bending and straightness of the bridge are not the main reasons for cracks of the bridge and that the prestress of the reinforcement hinders the cracks to a certain extent. The long-term cyclic effect of temperature plays a leading role in the initial crack of the bridge panels, and repeated loading of vehicle dynamic load in the later period makes the initial cracks further expand. The research results of this paper can provide a certain theoretical reference for analyzing causes of
bridge cracks.

参考文献

[1] 孟表柱 . 钢筋混凝土桥梁裂缝类型及分析[J]. 公路, 2002, 47(9): 56-59.
[2] 王萍, 柯在田 . 公路预应力混凝土桥梁裂缝分析[J]. 公路, 2005, 50(6): 14-17.
[3] Ulm F J, Coussy O. Strength growth as chemo-plastic hardening in early age concrete[J]. Journal of Engineering Mechanics, 1996, 122(12): 1123-1132.
[4] Cervera M, Oliver J, Prato T. Thermo-chemo-mechanical model for concrete. II: Damage and creep[J]. Journal of Engineering Mechanics, 1999, 125(9): 1028-1039.
[5] 陈宗辉, 吴迪, 董晓兵 . 预应力混凝土连续箱梁桥施工过程底板开裂原因分析[J]. 世界桥梁, 2021, 49(3): 103-107.
[6] 涂健, 赵体波, 雷俊卿 . 预应力混凝土连续箱梁裂缝产生原因及预防措施研究[J]. 铁道建筑, 2021, 61(10): 35-39.
[7] 谭国金, 姜霖, 吴春利, 等. 移动车辆作用下带有裂缝的多片梁式桥动力响应分析[J]. 吉林大学学报(工学版), 2020, 50(6): 2147-2158.
[8] 刘宇飞, 王宏宇, 庞博, 等. 大准铁路桥梁病害调查及损伤影响分析[J]. 铁道建筑, 2019, 59(10): 37-40.
[9] 贺罗, 李雄飞, 唐斌峰 . 桥梁施工中大体积混凝土裂缝成因及处理对策[J]. 公路, 2019, 64(9): 98-101.
[10] 朱劲松, 张一峰, 陈兴达. 移动车辆荷载作用下梁体裂缝扩展规律[J]. 东南大学学报(自然科学版), 2018, 48(4): 678-686.
[11] Mirambell E, Aguado A. Temperature and stress distributions in concrete box girder bridges[J]. Journal of Structural Engineering, 1990, 116(9): 2388-2409.
[12] Elbadry M M, Ghali A. Temperature variations in concrete bridges[J]. Journal of Structural Engineering, 1983, 109(10): 2355-2374.
[13] Clark J H. Evaluation of thermal stresses in a concrete box girder bridge[D]. Washington D. C.: University of Washington, 1989.
[14] 顾斌, 谢甫哲, 雷丽恒, 等 . 大跨桥梁结构三维日照温度场计算方法[J]. 东南大学学报(自然科学版), 2019,
49(4): 664-671. [15] Zhou L, Xia Y, Brownjohn J M W, et al. Temperature analysis of a long-span suspension bridge based on field monitoring and numerical simulation[J]. Journal of Bridge Engineering, 2016, 21(1): 04015027.
[16] 贾佳, 严仁章, 杨娟, 等 . 高寒区连续刚构桥建设期裂缝产生机理研究[J]. 公路, 2018, 63(4): 146-153.
[17] 冯春, 李世海, 郑炳旭, 等. 基于连续-非连续单元方法的露天矿三维台阶爆破全过程数值模拟[J]. 爆炸与冲击, 2019, 39(2): 110-120.
[18] 侯福金, 张丽, 蒋庆, 等 . 基于 CDEM 的层状节理隔水岩柱水压致裂特性研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 76-84.
文章导航

/