专题:网络空间地理学理论与应用

一种局部时空图卷积方法及其在网络漏洞预测的应用

  • 张珣 ,
  • 张楚童 ,
  • 艾孜孜·吐尔逊 ,
  • 郝蒙蒙 ,
  • 张迎春 ,
  • 江东
展开
  • 1. 北京工商大学计算机学院,北京 100048
    2. 和田师范专科学校数学与信息学院,和田 848099
    3. 中国科学院地理科学与资源研究所,北京 100101
    4. 北京工商大学人工智能学院,北京 100048
张珣,教授,研究方向为网络安全、地理人工智能,电子信箱:zhangxun@btbu.edu.cn

收稿日期: 2023-02-21

  修回日期: 2023-04-25

  网络出版日期: 2023-08-11

基金资助

中国科学院重点部署项目(ZDRW-XH-2021-3)

A local spatio-temporal graph convolution-based approach and its application to network vulnerability prediction

  • ZHANG Xun ,
  • ZHANG Chutong ,
  • EZIZ Tursun ,
  • HAO Mengmeng ,
  • ZHANG Yingchun ,
  • JIANG Dong
Expand
  • 1. School of Computer Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
    2. School of Mathematics and Information, Hotan Normal College, Hotan 848099, China
    3. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    4. School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

Received date: 2023-02-21

  Revised date: 2023-04-25

  Online published: 2023-08-11

摘要

针对网络安全态势预测中时空特征提取的不足,提出了一种基于局部时空卷积的网络漏洞预测方法,即局部时空图卷积网络模型,并针对网络漏洞数据选取历史平均法、长短期记忆网络、支持向量回归、时空图卷积网络模型进行对比实验。实验结果表明,提出的局部时空图卷积网络模型能够有效提高预测漏洞的时间、位置以及网络漏洞类型的准确度。

本文引用格式

张珣 , 张楚童 , 艾孜孜·吐尔逊 , 郝蒙蒙 , 张迎春 , 江东 . 一种局部时空图卷积方法及其在网络漏洞预测的应用[J]. 科技导报, 2023 , 41(13) : 67 -75 . DOI: 10.3981/j.issn.1000-7857.2023.13.007

Abstract

To address the shortage of spatio-temporal feature extraction in network security situation prediction, a local spatio-temporal convolution-based network vulnerability prediction method, namely the local spatio-temporal graph convolutional network model, is proposed, and HA, LSTM, SVR and STGCN models are selected for comparison experiments on network vulnerability data. Experimental results show that the model proposed in this paper can effectively improve the accuracy in predicting the time and location of vulnerabilities as well as the type of network vulnerabilities.

参考文献

[1] Wang S, Cao J, Yu P. Deep learning for spatio-temporal data mining: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 14(8): 1-21.
[2] Hossain S, Abtahee A, Kashem I. Crime prediction using spatio-temporal data[C]//International Conference on Computing Science, Communication and Security. Gujarat: Springer, 2020: 277-289.
[3] Vapnik V N, Lerner A Y. Recognition of patterns with help of generalized portraits[J]. Avtomat. i Telemekh, 1963, 24(6): 774-780.
[4] Vlahogianni E I, Karlaftis M G, Golias J C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(3): 211-234.
[5] Zheng Z, Su D. Short-term traffic volume forecasting: A k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm[J]. Transportation Research Part C: Emerging Technologies, 2014(43): 143-157.
[6] Song X, Kanasugi H, Shibasaki R. Deeptransport: Prediction and simulation of human mobility and transportation mode at a citywide level[C]//the 25th International Joint Conference on Artificial Intelligence. New York: IJCAI, 2016: 2618-2624.
[7] Ma X, Dai Z, He Z, et al. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818-834.
[8] Ma X, Tao Z, Wang Y, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54(1): 187-197.
[9] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[C]//the 5th International Conference on Learning Representations. Toulon: ICLR, 2017: 1-14.
[10] Seo Y, Defferrard M, Vandergheynst P, et al. Structured sequence modeling with graph convolutional recurrent networks[C]//the 25th International Conference on Neural Information Processing. Siem Reap: Springer, 2018: 362-373.
[11] Zhao L, Song Y, Zhang C, et al. T-GCN: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 17(99): 1-11.
[12] Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[J]. In International Joint Conference on Artificial Intelligence, 2018(12): 3634-3640.
[13] Guo S, Lin Y, Feng N. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [C]//AAAI Conference on Artificial Intelligence. Washington, USA: AAAI Press, 2019, 33(1): 922-929.
[14] 徐冰冰, 岑科廷, 黄俊杰, 等 . 图卷积神经网络综述[J].计算机学报, 2020, 43(5): 755-780.
文章导航

/