W玻色子是一种传递弱力的媒介粒子,其质量来自于电弱对称性破缺,对其精确测量可以检验标准模型的自洽性,提供揭示可能的新物理迹象的重要途径。介绍了美国费米国家实验室对W玻色子质量的最精确测量结果,即比标准模型的预期结果偏离高了7个标准偏差,这一结果直接挑战粒子物理学的标准模型。分析了该实验结果以及理论误差的可能来源,解读了其可能引发的新物理效应。
W boson is the elementary bosonic particle mediating the weak force and its mass is originated from electroweak symmetry breaking. Precision measurements of W boson mass provide a self-consistence check of the standard model theory and could hint at new particles or other mysteries of physics yet to be discovered. The Fermilab CDF group published the most precise result on W boson mass and found that this new measurement disagreed with the standard model's expectation by 7 sigma on the statistical significance. This finding would possibly challenge the current understanding of the standard model of particle physics.
[1] CDF Collaboration, Aaltonens T, Amerio S, et al. High-precision measurement of the W boson mass with the CDF II detector[J]. Science, 2022, 376(6589): 170-176.
[2] Lee T D, Yang C N. Implications of the intermediate boson basis of the weak interactions: Existence of a quartet of intermediate bosons and their dual isotopic spin transformation properties[J]. Physical Review, 1960, 119(4): 1410-1419.
[3] Weinberg S. A model of leptons[J]. Physical Review Letters, 1967, 19(21): 1264-1266.
[4] ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[J]. Physics Letters B, 2012, 716: 1-29.
[5] CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC[J]. Physics Letters B, 2012, 716: 30-61.
[6] Higgs P W. Broken symmetries and the masses of gauge bosons[J]. Physical Review Letters, 1964, 13(16): 508-509.
[7] Englert F, Brout R. Broken symmetry and the mass of gauge vector mesons[J]. Physical Review Letters, 1964, 13(9): 321-323.
[8] Guralnik G S, Hagen C R, Kibble T W B. Global conservation laws and massless particles[J]. Physical Review Letters, 1964, 13(20): 585-587.
[9] UA1 Collaboration. Experimental observation of isolated large transverse energy electrons with associated missing energy at s=540 GeV[J]. Physics Letters B, 1983, 122: 103-116.
[10] UA2 Collaboration. Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN anti-p p collider[J]. Physics Letters B, 1983, 122: 476-485.
[11] Schael S, Barate R, Bruneliere R, et al. Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP[J]. Physics Reports, 2013, 532(4): 119-244.
[12] Aaltonen T, Alvarez Gonzalez B, Amerio S, et al. Precise measurement of the W-boson mass with the CDF II detector[J]. Physical Review Letters, 2012, 108(15): 151803.
[13] Abazov V M, Abbott B, Acharya B S, et al. Measurement of the W boson mass with the D0 detector[J]. Physical Review Letters, 2012, 108(15): 151804.
[14] Aaltonen T, Abazov V M, Abbott B, et al. W-boson mass measurements[J]. Physical Review D, 2013, 88(5): 052018.
[15] Quigg C. The state of the standard model[J]. AIP Conference Proceedings, 2000, 542: 3-28.
[16] Abe F, Akimoto H, Akopian A, et al. Observation of top quark production in p collisions[J]. Physical Review Letters, 1995, 74(14): 2626-2631.
[17] D0 Collaboration. Observation of the top quark[J]. Physical Review Letters, 1995, 74(14): 2632-2637.
[18] Balázs C, Yuan C P. Soft gluon effects on lepton pairs at hadron colliders[J]. Physics Review D, 1997, 56(9): 5558-5583.
[19] Hou T J, Gao J, Hobbs T J, et al. New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC[J]. Physics Review D, 2021, 103(1): 014013.
[20] Zyla P A, Barnett R M, Beringer J, et al. Review of particle physics[J]. Progress of Theoretical and Experimental Physics, 2020(8): 083C01.
[21] Campagnari C, Mulders M. An upset to the standard model: Latest measurement of the W boson digs at the most important theory in particle physics[J]. Science, 2022, 376(6589): 136.