[1] 崔迪. 面向建筑信息的多人虚拟交互方式研究——以六主村无止桥公益项目情景为例[D]. 上海: 同济大学, 2018: 1-3.
[2] 赵沁平 . 从虚拟现实技术管窥新兴工科人才培养[J]. 中国大学教学, 2019(9): 7-9.
[3] 史晓刚, 薛正辉, 李会会, 等 . 增强现实显示技术综述[J]. 中国光学, 2021, 14(5): 1146-1161.
[4] 王伟 . 光波导成 AR 眼镜新宠[N]. 中国电子报, 2021-11-23(005).
[5] 王伟 . 硅基 OLED 微型显示领域又有新进展[N]. 中国电子报, 2022-06-28(06).
[6] 杨建兵, 秦昌兵, 张白雪, 等 . 大尺寸高分辨率硅基OLED 微显示技术研究[J]. 光电子技术, 2019, 39(3): 181-185.
[7] 张天宇. 京东方显示屏出货实现全球“双冠”[N]. 北京商报, 2019-11-22(F5).
[8] 史晓刚, 薛正辉, 李会会, 等 . 增强现实显示技术综述[J]. 中国光学, 2021, 14(5): 1146-1161.
[9] 陈浩, 朱杰辉, 沈庆云 . 一种舞台用快装式 LED灯装置: 202210900390.2[P]. 2022-07-26.
[10] 姜玉婷, 张毅, 胡跃强, 等 . 增强现实近眼显示设备中光波导元件的研究进展[J]. 光学精密工程, 2021, 29(1): 28-44.
[11] Richter P, Bürger A, Waldern J, et al. Compact AR-HUD solution with optical waveguide[J]. ATZelektronik Worldwide, 2017, 12(3): 18-23.
[12] Grad Ya A, Odinokov S B, Solomashenko A B, et al. Study of color reproduction features of AR device based on optical waveguides[C]//Optics, Photonics and Digital Technologies for Imaging Applications VI. Bellingham: Society of Photo-Optical Instrumentation Engineers, 2021: 11353.
[13] 倪一博, 闻顺, 沈子程, 等 . 基于超构表面的多维光场感知[J]. 中国激光, 2021, 48(19): 233-260.
[14] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.
[15] 刘逸天, 陈琦凯, 唐志远, 等 . 超表面透镜的像差分析和成像技术研究[J]. 中国光学, 2021, 14(4): 831-850.
[16] Li Z, Lin P, Huang Y W, et al. Meta-optics achieves RGB-achromatic focusing for virtual reality[J]. Science Advances, 2021, 7(5): eabe4458.
[17] Lee G Y, Hong J Y, Hwang S, et al. Metasurface eyepiece for augmented reality[J]. Nature Communications. 2018, 9(1): 4562.
[18] Zhang J L, Wang X R, Yang Y, et al. Flat dielectric metasurface lens array for three dimensional integral imaging[J]. Optics Communications, 2018, 414: 1-4.
[19] Deng H, Wang Q H. 3D display technology for augmented reality based on integral imaging-A review[J]. Science & Technology Review, 2018, 36(9): 18-24.
[20] Liu L, Ouyang W L, Wang X G, et al. Deep learning for generic object detection: A survey[J]. International Journal of Computer Vision, 2020, 128(2): 261-318.
[21] McBride T J, Vandayar N, Nixon K J. A comparison of skin detection algorithms for hand gesture recognition[C]//2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). Piscataway NJ: IEEE, 2019: 211-216.
[22] 何胜皎 . 视频序列中运动目标检测算法的研究[D]. 兰州: 兰州理工大学, 2018.
[23] Zimmermann C, Brox T. Learning to estimate 3D hand pose from single rgb images[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2017: 4903-4911.
[24] Gulati S, Bhogal R K. Comprehensive review of various hand detection approaches[C]//2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET). Piscataway, NJ: IEEE, 2018: 1-5.
[25] Zhao S Y, Yang W Y, Wang Y G. A new hand segmentation method based on fully convolutional network[C]//2018 Chinese Control and Decision Conference (CCDC). Piscataway, NJ: IEEE, 2018: 5966-5970.
[26] Grill J B, Strub F, Altché F, et al. Bootstrap your own latent—A new approach to self-supervised learning[J]. Advances in Neural Information Processing Systems, 2020, 33: 21271-21284.
[27] Liu Z P, Chai X J, Liu Z, et al. Continuous gesture recognition with hand-oriented spatiotemporal feature[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Piscataway, NJ: 2017: 3056-3064.
[28] Narayana P, Beveridge R, Draper B A. Gesture recogni⁃tion: Focus on the hands[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2018: 5235-5244.
[29] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 779-788.
[30] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 7263-7271.
[31] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv Preprint, 2018: 1804.02767.
[32] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv Preprint, 2020: 2004.10934.
[33] Huu P N, The H L. Proposing recognition algorithms for hand gestures based on machine learning model[C]//2019 19th International Symposium on Communications and Information Technologies (ISCIT). Piscataway, NJ: IEEE, 2019: 496-501.
[34] Zhan F. Hand gesture recognition with convolution neural networks[C]//2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). Piscataway NJ: IEEE, 2019: 295-298.
[35] Du T, Ren X M, Li H C. Gesture recognition method based on deep learning[C]//2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). Piscataway, NJ: IEEE, 2018: 782-787.
[36] Hong J Y, Park S H, Baek J G. Segmented dynamic time warping based signal pattern classification[C]//2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing(EUC). Piscataway, NJ: IEEE, 2019: 263-265.
[37] Tölgyessy M, Dekan M, Chovanec L', et al. Evaluation of the azure Kinect and its comparison to Kinect V1 and Kinect V2[J]. Sensors, 2021, 21(2): 413.
[38] Mor B, Garhwal S, Kumar A. A systematic review of hidden markov models and their applications[J]. Archives of Computational Methods in Engineering, 2021, 28(3): 1429-1448.
[39] Haid M, Budaker B, Geiger M, et al. Inertial-based gesture recognition for artificial intelligent cockpit control using hidden markov models[C]//2019 IEEE International Conference on Consumer Electronics (ICCE). Piscataway, NJ: IEEE, 2019: 1-4.
[40] Tang J, Cheng H, Zhao Y, et al. Structured dynamic time warping for continuous hand trajectory gesture recognition[J]. Pattern Recognition, 2018, 80: 21-31.
[41] 张建荣 . 基于 Kinect 手势识别的虚拟环境体感交互技术研究[D]. 重庆: 重庆邮电大学, 2016.
[42] Saha S, Lahiri R, Konar A, et al. HMM-based gesture recognition system using Kinect sensor for improvised human-computer interaction[C]//2017 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2017: 2776-2783.
[43] Khan A, Sohail A, Zahoora U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53(8): 5455-5516.
[44] Feichtenhofer C. X3d: Expanding architectures for efficient video recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: 2020: 203-213.
[45] Feichtenhofer C, Pinz A, Zisserman A. Convolutional two-stream network fusion for video action recognition[C]//Proceedings of the IEEE Conference on Computer vision and Pattern Recognition. Piscataway, NJ: 2016: 1933-1941.
[46] Jing L L, Tian Y L. Self-supervised visual feature learning with deep neural networks: A survey[J]. IEEE Transactions On Pattern Analysis and Machine Intelligence, 2020, 43(11): 4037-4058.
[47] Han T, Xie W, Zisserman A. Self-supervised co-training for video representation learning[J]. Advances in Neural Information Processing Systems, 2020, 33: 5679-5690.
[48] Feichtenhofer C, Fan H, Malik J, et al. Slowfast networks for video recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway, NJ: IEEE, 2019: 6202-6211.
[49] Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning. Brookline, MA: Microtome Publishing, 2019: 6105-6114.
[50] Lin J, Gan C, Han S. Tsm: Temporal shift module for efficient video understanding[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway, NJ: IEEE, 2019: 7083-7093.
[51] Yan S, Xiong Y, Lin D. Spatial temporal graph convolutional networks for skeleton-based action recognition[C].Thirty-second AAAI Conference on Artificial Intelligence. Washington: AAAI, 2018.
[52] Zhou H, Zhou W G, Zhou Y, et al. Spatial-temporal multi-cue network for continuous sign language recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washington: AAAI, 2020, 34(7): 13009-13016.
[53] Zhu G M, Zhang L, Mei L, et al. Large-scale isolated gesture recognition using pyramidal 3D convolutional networks[C]//2016 23rd International Conference on Pattern Recognition (ICPR). Piscataway, NJ: IEEE, 2016: 19-24.
[54] Li Y N, Miao Q G, Tian K, et al. Large-scale gesture recognition with a fusion of RGB-D data based on saliency theory and C3D model[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 28(10): 2956-2964.
[55] Tran D, Ray J, Shou Z, et al. Convnet architecture search for spatiotemporal feature learning[J]. arXiv Preprint, 2017: 1708.05038.
[56] Miao Q G, Li Y N, Ouyang W L, et al. Multimodal gesture recognition based on the ResC3D network[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Piscataway, NJ: IEEE, 2017: 3047-3055.
[57] Li Y N, Miao Q G, Qi X D, et al. A spatiotemporal attention-based ResC3D model for large-scale gesture recognition[J]. Machine Vision and Applications, 2019, 30(5): 875-888.
[58] Gupta P, Kautz K. Online detection and classification of dynamic hand gestures with recurrent 3D convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway NJ: IEEE, 2016: 4207-4215.
[59] Zhu G M, Zhang L, Shen P Y, et al. Multimodal gesture recognition using 3D convolution and convolutional LSTM[J]. IEEE Access, 2017, 5: 4517-4524.
[60] Black M H, Chen N, Iyer K K, et al. Mechanisms of facial emotion recognition in autism spectrum disorders: Insights from eye tracking and electroencephalography[J]. Neuroence and Biobehavioral Reviews, 2017, 80: 488-515.
[61] Moruzzi G, Magoun H W. Brain stem reticular formation and activation of the EEG[J]. Electroencephalography and Clinical Neurophysiology, 1949, 1(1/2/3/4): 455-473.
[62] Gibbs F A, Lennox W G, Gibbs E L. The electro-encephalogram in diagnosis and in localization of epileptic seizures[J]. Arch NeurPsych, 1936, 36(6): 1225-1235.
[63] Gabor A J, Seyal M. Automated interictal EEG spike detection using artificial neural networks[J]. Electroencephalography and Clinical Neurophysiology, 1992, 83(5): 271-280.
[64] Taran S, Bajaj V. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method[J]. Computer Methods and Programs in Biomedicine, 2019, 173: 157-165.
[65] Chen L L, Zhang J, Zou J Z, et al. A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection[J]. Biomedical Signal Processing & Control, 2014, 10: 1-10.
[66] 张涛, 陈万忠, 李明阳. 基于频率切片小波变换和支持向量机的癫痫脑电信号自动检测[J]. 物理学报, 2016(3): 038703.
[67] 邹凌, 王新光 . 独立分量分析结合小波去噪算法提取诱发电位信号的仿真实验[J]. 中国组织工程研究, 2009, 13(43): 8503-8505.
[68] 李冬梅 . 经验模式分解与代价敏感支持向量机在癫痫脑电信号分类中的应用[J]. 生物医学工程研究, 2017, 36(1): 33-37.
[69] 贺王鹏, 杨琳, 王芳, 等 . 基于 TQWT 的癫痫脑电信号的识别[J]. 生物医学工程研究, 2017, 36(4): 346-350.
[70] Pachori R B, Bajaj V. Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition[J]. Computer Methods and Programs in Biomedicine, 2011, 104(3): 373-381.
[71] 张发华, 舒琳, 邢晓芬 . 头皮脑电采集技术研究[J]. 电子技术应用, 2017, 43(12): 3-8.
[72] 丁超. 便携式脑电采集系统设计[D]. 成都: 电子科技大学, 2013.
[73] 刘屏. 精神创伤后应激障碍及其防治研究进展[J]. 中国药物应用与监测, 2017, 14(1): 1-5.
[74] Pandey P, Seeja K R. Subject independent emotion recognition from EEG using VMD and deep learning[J]. Journal of King Saud University—Computer and Information Sciences, 2022, 34(5): 1730-1738.
[75] Camarda A, Salvia É, Vidal J, et al. Neural basis of functional fixedness during creative idea generation: An EEG study[J]. Neuropsychologia, 2018, 118(Part A): 4-12.
[76] Wankhade S B, Doye D D. IKKN predictor: An EEG signal based emotion recognition for HCI[J]. Wireless Personal Communications, 2019, 107(3): 12-15.
[77] Sutter E E. The brain response interface: Communication through visually-induced electrical brain responses[J]. Journal of Microcomputer Applications, 1992, 15(1): 31-45.
[78] Farwell L, Donchin E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials[J]. Electro-encephalography and Clinical Neurophysiology, 1989, 70(6): 510-523.
[79] Pfurtscheller G, Silva F. Event-related EEG/MEG synchronization and desynchronization: Basic principles[J]. Clinical Neurophysiology, 1999, 110(11): 1842-1857.
[80] Wolpaw J R, McFarland D J, Neat G W, et al. An EEG-based brain-computer interface for cursor control[J]. Electroencephalography and Clinical Neurophysiology, 1991, 78(3): 252-259.