综述

光生物调节治疗阿尔茨海默病研究进展

  • 徐国栋 ,
  • 吕泽平 ,
  • 汪待发 ,
  • 郭蓉
展开
  • 1. 江苏省丹阳市人民医院,丹阳 212300
    2. 国家康复辅具研究中心附属康复医院,北京 100176
    3. 北京市老年人功能障碍康复辅助技术重点实验室,北京 100176
    4. 北京航空航天大学生物与医学工程学院,北京 100083
徐国栋,主治医师,研究方向为老年神经病学基础及临床,电子信箱:xgd666@126.com

收稿日期: 2022-08-18

  修回日期: 2022-10-18

  网络出版日期: 2023-08-30

基金资助

国家重点研发计划项目(2018YFC2001700,2020YFC2004200);国家重大科研仪器研制项目(81927804);江苏省重点研发计划项目(BE2021077)

Research progress of photobiomodulation for Alzheimer's disease

  • XU Guodong ,
  • LV Zeping ,
  • WANG Daifa ,
  • GUO Rong
Expand
  • 1. Department of Infectious Disease, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
    2. Rehabilitation Hospital Affiliated to National Research Center for Rehabilitation Assistive Devices, Beijing 100176, China
    3. Beijing Key Laboratory of Assistive Technology for Rehabilitation of Elderly Dysfunction, Beijing 100176, China
    4. School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China

Received date: 2022-08-18

  Revised date: 2022-10-18

  Online published: 2023-08-30

摘要

阿尔茨海默病(AD)是一种以进行性记忆丧失和认知功能障碍为特征的神经退行性疾病。光生物调节(PBM)是一种针对AD治疗的有前景的创新技术路线。介绍了PBM对AD的作用机制以及相关的动物实验和临床研究,分析了PBM对AD治疗的可行性、有效性、研究重点和难点,总结了PBM应用于AD治疗的研究趋势。

本文引用格式

徐国栋 , 吕泽平 , 汪待发 , 郭蓉 . 光生物调节治疗阿尔茨海默病研究进展[J]. 科技导报, 2023 , 41(15) : 79 -88 . DOI: 10.3981/j.issn.1000-7857.2023.15.008

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease with progressive memory loss and cognitive impairment. Photobiomodulation (PBM) is a promising and innovative therapy for AD treatment. This article reviews the mechanisms of action of PBM for AD treatment and related animal experiments and clinical studies, then analyzes the feasibility, effectiveness, research priorities and challenges of PBM for AD treatment, and finally summarizes the future research trends of PBM for AD treatment, so as to provide a reference for follow-up research.

参考文献

[1] 李静. 血管危险因素及脑缺血对老年性痴呆认知功能影响的研究[D]. 重庆: 第三军医大学, 2007.
[2] Hirtz D G, Thurman D J, Gwinn-Hardy K, et al. How common are the "common" neurologic disorders?[J]. Neurology, 2007, 68(5): 326-337.
[3] Jia L F, Du Y, Chu L F, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. The Lancet Public Health, 2020, 5(12):e661-e671.
[4] Jia J P, Wei C B, Chen S Q, et al. The cost of Alzheimer's disease in China and re-estimation of costs worldwide[J]. Alzheimer's & Dementia, 2018, 14(4): 483-491.
[5] Birks J. Cholinesterase inhibitors for Alzheimer's disease[J]. The Cochrane Database of Systematic Reviews, 2006, 2006(1): CD005593.
[6] Alva G, Cummings J L. Relative tolerability of Alzheimer's disease treatments[J]. Psychiatry-interpersonal & Biological Processes, 2008, 5(11): 27-36.
[7] Ali T B, Schleret T R, Reilly B M, et al. Adverse effects of cholinesterase inhibitors in dementia, according to the pharmacovigilance databases of the United-States and Canada[J]. PLoS One, 2015, 10(12): e0144337.
[8] Weller J, Budson A. Current understanding of Alzheimer's disease diagnosis and treatment[J]. F1000Research, 2018, doi: 10.12688/f1000research.14506.1.
[9] De Freitas L F, Hamblin M R. Proposed mechanisms of photobiomodulation or low-level light therapy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(3): 348-364.
[10] Chow R T, Johnson M I, Lopes-Martins R A, et al. Effi cacy of low-level laser therapy in the manage-ment of neck pain: A systematic review and meta-analysis[J]. Lancet, 2009, 374(9705): 1897-908.
[11] Schiffer F, Johnston A L, Ravichandran C, et al. Psycholog-ical benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: A pilot study of 10 patients with major depression and anxiety[J]. Behavioral and Brain Functions, 2009, doi: 10.1186/1744-9081-5-46.
[12] Hamblin M R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation[J]. AIMS Biophys, 2017, 4(3): 337-361.
[13] Mcguff P E. Tumoricidal effect of laser radiation on malignant tumors[J]. International Ophthalmology Clinics, 1966, 6(2): 379-386.
[14] El Massri N, Moro C, Torres N, et al. Near-infrared light treatment reduces astrogliosis in MPTP-treated monkeys[J]. Experimental brain research, 2016, 234(11): 3225-3232.
[15] Wu C, Yang L, Li Y, et al. Effects of exercise training on anxious-depressive-like behavior in alzheimer rat[J]. Medicine and Science in Sports and Exercise, 2020, 52(7): 1456-1469.
[16] Wu C, Yang L, Tucker D, et al. Beneficial effects of exercise pretreatment in a sporadic Alzheimer's rat model[J]. Medicine and Science in Sports and Exercise, 2018, 50(5): 945-956.
[17] Yang L D, Youngblood H, Wu C Y, et al. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation[J]. Translational Neurodegeneration, 2020, 9(1): 19.
[18] Agostinho P, Cunha R A, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease[J]. Current Pharmaceutical Design, 2010, 16(25): 2766-2778.
[19] Mintzopoulos D, Gillis T E, Tedford C E, et al. Effects of near-infrared light on cerebral bioenergetics measured with phosphorus magnetic resonance spectroscopy[J]. Photomedicine and Laser Surgery, 2017, 35(8): 395-400.
[20] Lu Y J, Wang R M, Dong Y, et al. Low-level laser therapy for beta amyloid toxicity in rat hippocampus[J]. Neurobiology of Aging, 2017, 49: 165-182.
[21] Swerdlow R H, Burns J M, Khan S M. The Alzheimer's disease mitochondrial cascade hypothesis: Progress and perspectives[J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2014, 1842(8): 1219-1231.
[22] Weidling I, Swerdlow R H. Mitochondrial dysfunction and stress responses in Alzheimer's disease[J]. Biology, 2019, doi: 10.3390/biology8020039.
[23] Lee H I, Lee S W, Kim S Y, et al. Pretreatment with light-emitting diode therapy reduces ischemic brain injury in mice through endothelial nitric oxide synthase-dependent mechanisms[J]. Biochemical and Biophysical Research Communications, 2017, 486(4): 945-950.
[24] Charriaut-Marlangue C, Bonnin P, Pham H, et al. Nitric oxide signaling in the brain: A new target for inhaled nitric oxide[J]. Annals of Neurology, 2013, 73(4): 442-448.
[25] Cury V, Moretti A I S, Assis L, et al. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2[J]. Journal of Photochemistry and Photobiology B: Biology, 2013, 125: 164-170.
[26] Tramutola A, Lanzillotta C, Perluigi M, et al. Oxidative stress, protein modification and Alzheimer disease[J]. Brain Research Bulletin, 2017, 133: 88-96.
[27] Mungrue I N, Mansoor H, Stewart D J. The role of NOS in heart failure: Lessons from murine genetic models[J]. Heart Failure Reviews, 2002, 7(4): 407-22.
[28] Ahmed I, Bose S K, Pavese N, et al. Glutamate NMDA receptor dysregulation in Parkinson's disease with dyskinesias[J]. Brain, 2011, 134(4): 979-986.
[29] Storz P. Mitochondrial ROS-radical detoxification, mediated by protein kinase D[J]. Trends in Cell Biology, 2007, 17(1): 13-18.
[30] Lim W, Kim J, Kim S, et al. Modulation of lipopolysaccharide-induced NF- κB signaling pathway by 635 nm irradiation via heat shock protein 27 in human gingival fibroblast cells[J]. Photochemistry and Photobiology, 2013, 89(1): 199-207.
[31] Yamaura M, Yao M, Yaroslavsky I, et al. Low-level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes[J]. Lasers in Surgery and Medicine, 2009, 41(4): 282-290.
[32] Marte A, Messa M, Benfenati F, et al. Synapsins are downstream players of the BDNF-mediated axonal growth[J]. Molecular Neurobiology, 2017, 54(1): 484-494.
[33] Meng C, He Z, Xing D. Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: Implications for Alzheimer's disease[J]. The Journal of Neuroscience, 2013, 33(33): 13505-13517.
[34] Ling Q, Meng C, Chen Q, et al. Activated ERK/FOXM1 pathway by low-power laser irradiation inhibits UVB-induced senescence through down-regulating p21 expression[J]. Journal of Cellular Physiology, 2014, 229(1): 108-116.
[35] Tao L C, Liu Q, Zhang F L, et al. Microglia modulation with 1070-nm light attenuates Aβ burden and cognitive impairment in Alzheimer's disease mouse model[J]. Light: Science & Applications, 2021, doi: 10.1038/s41377-021-00617-3.
[36] Yang L D, Wu C Y, Parker E, et al. Non-invasive photobiomodulation treatment in an Alzheimer Disease-like transgenic rat model[J]. Theranostics, 2022, 12(5): 2205-2231.
[37] Clarke L E, Liddelow S A, Chakraborty C, et al. Normal aging induces A1-like astrocyte reactivity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): E1896-E1905.
[38] Yao K, Zu H B. Microglial polarization: novel therapeutic mechanism against Alzheimer's disease[J]. Inflammopharmacology, 2020, 28(1): 95-110.
[39] Grimaldi A, Pediconi N, Oieni F, et al. Neuroinflammatory processes, A1 astrocyte activation and protein aggregation in the retina of Alzheimer's disease patients, possible biomarkers for early diagnosis[J]. Frontiers in Neuroscience, 2019, doi: 10.3389/fnins.2019.00925.
[40] Park H J, Oh S H, Kim H N, et al. Mesenchymal stem cells enhance α -synuclein clearance via M2 microglia polarization in experimental and human parkinsonian disorder[J]. Acta Neuropathologica, 2016, 132(5): 685-701.
[41] De Taboada L, Yu J, El-Amouri S, et al. Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid- β protein precursor transgenic mice[J]. Journal of Alzheimer's Disease: JAD, 2011, 23(3): 521-535.
[42] Grillo S L, Duggett N A, Ennaceur A, et al. Non-invasive infra-red therapy (1072 nm) reduces β -amyloid protein levels in the brain of an Alzheimer's disease mouse model, TASTPM[J]. Journal of Photochemistry and Photobiology B: Biology, 2013, 123: 13-22.
[43] Farfara D, Tuby H, Trudler D, et al. Low-level laser therapy ameliorates disease progression in a mouse model of Alzheimer's disease[J]. Journal of Molecular Neuroscience, 2015, 55(2): 430-436.
[44] Blivet G, Meunier J, Roman F J, et al. Neuroprotective effect of a new photobiomodulation technique against Aβ 25-35 peptide-induced toxicity in mice: novel hypothesis for therapeutic approach of Alzheimer's disease suggested[J]. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 2018, 4: 54-63.
[45] Purushothuman S, Johnstone D M, Nandasena C, et al. Photobiomodulation with near infrared light mitigates Alzheimer's disease-related pathology in cerebral cortex - evidence from two transgenic mouse models[J]. Alzheimer's Research & Therapy, 2014, doi: doi: 10.1186/alzrt232.
[46] Purushothuman S, Johnstone D M, Nandasena C, et al. Near infrared light mitigates cerebellar pathology in transgenic mouse models of dementia[J]. Neuroscience Letters, 2015, 591: 155-159.
[47] Da Luz Eltchechem C, Salgado A S I, Zângaro R A, et al. Transcranial LED therapy on amyloid-β toxin 25-35 in the hippocampal region of rats[J]. Lasers in Medical Science, 2017, 32(4): 749-756.
[48] 黄琼. 老年阿尔茨海默病神经内科诊断及治疗研究[J].当代医学, 2018(5): 35-36.
[49] Wijesinghe P, Shankar S K, Yasha T C, et al. Vascular contributions in Alzheimer's disease-related neuropathological changes: First autopsy evidence from a South Asian aging population[J]. Journal of Alzheimer's Disease, 2016, 54(4): 1607-1618.
[50] Shcherbatykh I, Carpenter D O. The role of metals in the etiology of Alzheimer's disease[J]. Journal of Alzheimer's Disease, 2007, 11(2): 191-205.
[51] Saltmarche A E, Naeser M A, Ho K F, et al. Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: Case series report[J]. Photomedicine and Laser Surgery, 2017, 35(8): 432-441.
[52] Berman M H, Halper J P, Nichols T W, et al. Photobiomodulation with near infrared light helmet in a pilot, placebo controlled clinical trial in dementia patients testing memory and cognition[J]. Journal of Neurology and Neuroscience, 2017, doi: 10.21767/2171-6625.1000176.
[53] Arakelyan H S. Treatment of alzheimer's disease with a combination of laser, magnetic field and chromo light(colour) therapies: A double-blind controlled trial based on a review and overview of the etiological pathophysiology of alzheimer's disease[J]. Laser Therapy, 2005, 14(1): 19-28.
[54] De Taboada I V. Dementia and cognitive impairment reduction after laser transcatheter treatment of Alzheimer's disease[J]. World Journal of Neuroscience, 2015, 5(3): 189-203.
[55] Chao L L. Effects of home photobiomodulation treatments on cognitive and behavioral function, cerebral perfusion, and resting-state functional connectivity in patients with dementia: a pilot trial[J]. Photobiomodulation, Photomedicine, and Laser Surgery, 2019, 37(3): 133-141.
[56] 李昕, 谢佳利, 侯永捷, 等 . 脑电特征分析在阿尔茨海默症临床研究中的应用[J]. 中国生物医学工程学报, 2016, 35(2): 234-240.
[57] Zomorrodi R, Saltmarcheet A E, Loheswaran G, et al. Complementary EEG evidence for a significantly improved Alzheimer's disease case after photobiomodulation treatment[J]. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 2017, 13(7): P621.
[58] Henderson T A, Morries L D. Near-infrared photonic energy penetration: Can infrared phototherapy effectively reach the human brain? [J]. Neuropsychiatric Disease and Treatment, 2015, 11: 2191-2208.
[59] Yuan Y, Cassano P, Pias M, et al. Transcranial photobiomodulation with near-infrared light from childhood to elderliness: simulation of dosimetry[J]. Neurophotonics, 2020, 7(1): 015009.
[60] Tian F, Varghese J, Tran A, et al. Effects of wavelength on transcranial laser stimulation: a Monte Carlo simulation study based on standard brain model (Conference Presentation) [C]//Proceedings Volume 11221, Mechanisms of Photobiomodulation Therapy XV. San Francisco: SPIE, 2020, doi: 10.1117/12.2545286.
文章导航

/