拉德任斯卡娅(1922—2004年)是20世纪俄罗斯最著名的女数学物理学家之一,对偏微分方程的重要领域都做出了卓越贡献,尤其在双曲型、椭圆型、抛物型偏微分方程、纳维-斯托克斯方程以及吸引子理论方面更为突出,为俄罗斯科技强国做出了突出贡献。通过阐述她的人生经历、学术成就和深刻影响,展示了其献身科学的人生观、追求科学的卓越精神及推动科学进步的驱动力。
Olga Alexandrovna Ladyzhenskaya was one of the most outstanding female mathematical physicists in Russia in the twentieth century, she made outstanding contributions to the field of partial differential equations, especially in hyperbolic, elliptic, parabolic partial differential equations, Navier-Stokes equations, and attractor theory. Her outstanding contributions also made Russia become a scientific and technological power. By explaining her life experience, academic achievements and profound influences, this paper demonstrates her scientific outlook on life, pursuit of scientific excellence and the driving force to promote scientific progress.
[1] Dumbaugh D, Daskalopoulos P, Vershik A, et al. The ties that bind Olga Alexandrovna Ladyzhenskaya and the 2022 ICM in St. Petersburg[J]. Notices of the American Mathematical Society, 2020, 67(3): 373-381.
[2] Friedlander S, Lax P, Morawetz C, et al. Olga Alexandrovna Ladyzhenskaya (1922—2004)[J]. Notices of the American Mathematical Society, 2004, 51(11): 1320-1331.
[3] Friedlander S, Keyfitz B L. Olga Ladyzhenskaya and Olga Oleinik: Two great women mathematicans of the 20th century[EB/OL]. [2022-04-02]. https://www.researchgate. net/publication/2418710119.2004-02-01.
[4] Arnol'd V I, Birman M S, Vershik A M, et al. Olga Aleksandrovna Ladyzhenskaya[J]. Uspekhi Matematichesk-ikh Nauk, 2004, 59(3): 151-152.
[5] Ladyzhenskaya O A. Closedness of elliptic operator[J]. Doklady Akademii Nauk, 1951, 79(5): 723-725.
[6] Ladyzhenskaya O A. The mixed problem for a hyperbolic equation[M]. Moscow: Gostekhizdat, 1953: 25-53.
[7] Ladyzhenskaya O A, Ural'tseva N N. Linear and quasi-linear elliptic equations[M]. Moscow: Nauka, 1964: 1-38.
[8] Ladyzhenskaya O A, Solonnikov V A, Ural'tseva N N. Linear and quasilinear equations of parabolic type[M]. Moscow: Nauka, 1967: 6-15.
[9] Ladyzhenskaya O A. Solution "in the large" of boundary value problems for the Navier-Stokes equations in two space variables[J]. Doklady Akademii Nauk, 1958, 123(3): 427-429.
[10] Ladyzhenskaya O A. The mathematical theory of viscous incompressible flow[M]. Moscow: Fizmatgiz, 1961: 15-24.
[11] Tao T. Finite time blowup for an averaged three-dimensional navier-stokes equation[J]. Journal of the American Mathematical Society, 2016, 29: 601-674.
[12] Ladyzhenskaya O A. Attractors for semigroups and evolution equations[M]. Cambridge: Cambridge University Press, 1991: 1-18.