综述

美俄空间核动力技术发展态势评析

  • 杭爽 ,
  • 杨洲 ,
  • 陈国玖 ,
  • 袁子程
展开
  • 1. 军事科学院战略评估咨询中心,北京 100091
    2. 中国核动力研究设计院反应堆工程研究所,成都 610213
杭爽,助理研究员,研究方向为核技术与应用,电子信箱:hangshuang1991@163.com

收稿日期: 2023-06-08

  修回日期: 2023-08-07

  网络出版日期: 2023-09-20

Analysis on the development trend of space nuclear power technology in the United States and Russia

  • HANG Shuang ,
  • YANG Zhou ,
  • CHEN Guojiu ,
  • YUAN Zicheng
Expand
  • 1. Strategic Assessments and Consultation Institute, Academy of Military Sciences, Beijing 100091, China
    2. Reactor Engineering Sub-Institute, Nuclear Power Institute of China, Chengdu 610213, China

Received date: 2023-06-08

  Revised date: 2023-08-07

  Online published: 2023-09-20

摘要

新一代空间核动力及推进技术的突破,将颠覆空间探测任务的样式。目前美国、俄罗斯加速了空间核动力系统的研发进程,相关技术处于世界领先地位。梳理了空间核动力系统基本分类和典型应用场景,综述了美俄空间核动力技术的发展历程及现状,并分析了美俄空间核动力技术的发展态势。结果表明,与冷战时期相比,未来空间探测任务对核动力系统的功率、灵活性、可靠性和安全性等提出了新的要求;美国、俄罗斯均高度重视空间核动力技术的发展,但发展战略和技术路线均存在差异,美国以下一代太空能力建设和深空探测项目为牵引,全面开展同位素电池、空间反应堆、核热推进系统、核电推进系统的研发;俄罗斯基于自身核电推进技术优势,重点发展核电推进飞船项目,意图以有限的资源投入保持自身太空领域竞争力。

本文引用格式

杭爽 , 杨洲 , 陈国玖 , 袁子程 . 美俄空间核动力技术发展态势评析[J]. 科技导报, 2023 , 41(17) : 84 -90 . DOI: 10.3981/j.issn.1000-7857.2023.17.010

Abstract

Breakthroughs of next-generation space nuclear power and propulsion technology will completely change the style of future space exploration missions. At present, the United States and Russia have accelerated their research and development processes of space nuclear power systems to keep their leading positions. This article outlines the classification and application scenarios of space nuclear power systems, summarizes the technology development processes and strategies of the US and Russia. Furthermore, the development trend of space nuclear power is analyzed. The results indicate that compared to the Cold War era, future space exploration missions have put forward new requirements for the power, flexibility, reliability, and safety of the nuclear power systems. The US and Russia attach great importance to the development of space nuclear power technology but there are differences in development strategies and technological routes. The US is conducting comprehensive research and development on radioisotope thermo-electric generator, space reactors, nuclear thermal propulsion systems, and nuclear electric propulsion systems, all driven by next-generation space capability development and deep space exploration projects. Russia, on the other hand, focuses on developing nuclear power propulsion spacecraft projects, taking its own advantages in nuclear power propulsion technology, with the intention of maintaining its competitiveness in the space field with limited resource investment.

参考文献

[1] 马世俊, 唐玉华, 朱安文, 等. 空间核动力的进展[M]. 上海: 中国宇航出版社, 2019: 3-5.
[2] 苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2020: 12-24.
[3] 胡古, 赵守智 . 空间核反应堆电源技术概览[J]. 深空探测学报, 2017(5): 430-443.
[4] 杭观荣, 洪鑫, 康小录 . 国外空间推进技术现状和发展趋势[J]. 火箭推进, 2013, 39(5): 7-15.
[5] Cataldo R L, Bennett G L. U.S. space radioisotope power systems and applications: Past, present and future[M]. Cleveland: Glenn Research Center, 2012: 10-13.
[6] Elliot J O, Reh K, MacPherson D. Lunar fission surface power system design and implementation concept[J]. AIP Conference Proceedings, 2006, 813(1): 942-952.
[7] KiloPower project KRUSTY experiment nuclear design[R]. Los Alamos: Los Alamos National Lab, 2015.
[8] Noca M, Polk J, Lenard R. Evolutionary strategy for the use of nuclear electric propulsion in planetary exploration[C]//The 18th Symposium on Nuclear Power and Propulsion. Albuquerque: NASA Technical Reports Server, 2001.
[9] Robbins W. An historical perspective of the NERVA nuclear rocket engine technology program[C]//Conference on Advanced SEI Technologies. Cleveland Ohio: National Aeronautics and Space Administration, 1991: 1-14.
[10] Nebergall K. Saturn Direct: What Mars colonists will dream and do[D]. United States Albuquerque: University of New Mexico, 2004.
[11] Drake B G, Hoffman S J, Beaty D W. Human exploration of Mars design reference architecture 5.0[R]. Washington: NASA, 2009.
[12] Christopher S. Maneuver warfare in space: The strategic mandate for nuclear propulsion[R]. Arlington: Mitchell Institute for Aerospace Studies, 2022.
[13] Presidential memorandum on launch of spacecraft containing space nuclear systems[EB/OL]. (2019-08-20)[2023-07-07]. https://trumpwhitehouse.archives.gov/presidential-actions/presidentia 1-memorandum-launch-spacecraft­containing-space-nuclear-systems.
[14] Memorandum on the national strategy for space nuclear power and propulsion (space policy directive-6)[EB/OL]. (2020-12-16) [2023-07-07]. https://trumpwhitehouse. archives. gov/presidential-actions/memorandum-national-0strategy-space-nuclear-power-propulsion-space-policy-di rective-6/.
[15] Koroteev A S. New stage in the use of atomic energy in space[J]. Atomic Energy, 2010, 108(3): 170-173.
[16] Joseph R, Cassady R J, Frisbee R H. Recent advances in nuclear powered electric propulsion for space exploration[J]. Energy Conversion and Management, 2008, 49(3): 412-435.
[17] Vadim Z, Vladimir P. Russian nuclear rocket engine design for Mars exploration[J]. Tsinghua Science and Technology, 2007, 12(3): 256-260.
[18] Siddiqi A A. Rocket engines from the glushko design bureau-1946-2000[J]. Journal of the British Interplanetary Society, 2001, 54(9): 311-334.
[19] Benensky K. Summary of historical solid core nuclear thermal propulsion fuels[D]. State College: The Pennsylvania State University, 2013.
[20] International Atomic Energy Agency. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna: International Atomic Energy Agency, 2005.
[21] Zaki R, Pavhook V. Feasibility of the recent Russian nuclear electric propulsion concept[J]. Nuclear Engineering and Design, 2011, 241(5): 1529-1537.
文章导航

/