[1] Siegel R L, Miller K D, Wagle N S, et al. Cancer statistics, 2023[J]. CA: A Cancer Journal for Clinicians, 2023, 73(1): 17-48.
[2] Oliver A L. Lung cancer: Epidemiology and screening[J]. Surgical Clinics of North America, 2022, 102(3): 335-344.
[3] Goldstraw P, Chansky K, Crowley J, et al. The IASLC Lung cancer staging project: Proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer[J]. Journal of Thoracic Oncology, 2016, 11(1): 39-51.
[4] Hirsch F R, Scagliotti G V, Mulshine J L, et al. Lung cancer: Current therapies and new targeted treatments[J]. The Lancet, 2017, 389(10066): 299-311.
[5] Lu T, Yang X, Huang Y, et al. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades[J]. Cancer Management and Research, 2019, 11: 943-953.
[6] Hafeez U, Parakh S, Gan H K, et al. Antibody-drug conjugates for cancer therapy[J]. Molecules, 2020, 25(20): 4764.
[7] Matsumura Y. Cancer stromal targeting therapy to overcome the pitfall of EPR effect[J]. Advanced Drug Delivery Reviews, 2020, 154: 142-150.
[8] Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody-drug conjugates[J]. Nature Reviews Drug Discovery, 2017, 16(5): 315-337.
[9] Yan M, Schwaederle M, Arguello D, et al. HER2 expression status in diverse cancers: Review of results from 37992 patients[J]. Cancer and Metastasis Reviews, 2015, 34(1): 157-164.
[10] Glover Z K, Wecksler A, Aryal B, et al. Physicochemical and biological impact of metal-catalyzed oxidation of IgG1 monoclonal antibodies and antibody-drug conjugates via reactive oxygen species[J]. MAbs, 2022, 14(1): 2122957.
[11] Giugliano F, Corti C, Tarantino P, et al. Bystander effect of antibody-drug conjugates: Fact or fiction?[J]. Current Oncology Reports, 2022, 24(7): 809-817.
[12] Ogitani Y, Hagihara K, Oitate M, et al. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity[J]. Cancer Science, 2016, 107(7): 1039-1046.
[13] Staudacher A H, Brown M P. Antibody drug conjugates and bystander killing: Is antigen-dependent internalisation required? [J]. British Journal of Cancer, 2017, 117(12): 1736-1742.
[14] Oh D Y, Bang Y J. HER2-targeted therapies-a role beyond breast cancer[J]. Nature Reviews Clinical Oncology, 2020, 17(1): 33-48.
[15] Cocco E, Lopez S, Santin A D, et al. Prevalence and role of HER2 mutations in cancer[J]. Pharmacology & Therapeutics, 2019, 199: 188-196.
[16] García-Alonso S, Ocaña A, Pandiella A. Trastuzumab emtansine: Mechanisms of action and resistance, cinical progress, and beyond[J]. Trends in Cancer, 2020, 6(2): 130-146.
[17] Li B T, Shen R, Buonocore D, et al. Ado-Trastuzumab Emtansine for patients with HER2-mutant lung cancers: Results from a Phase II basket trial[J]. Journal of Clinical Oncology, 2018, 36(24): 2532-2537.
[18] Li B T, Michelini F, Misale S, et al. HER2-mediated internalization of cytotoxic agents in ERBB2 amplified or mutant lung cancers[J]. Cancer Discovery, 2020, 10(5): 674-687.
[19] Wolska-Washer A, Robak T. Safety and tolerability of antibody-drug conjugates in cancer[J]. Drug Safety, 2019, 42(2): 295-314.
[20] Li B T, Smit E F, Goto Y, et al. Trastuzumab Deruxtecan in HER2-mutant non-small-cell lung cancer[J]. The New England Journal of Medicine, 2022, 386(3): 241-251.
[21] Riudavets M, Sullivan I, Abdayem P, et al. Targeting HER2 in non-small-cell lung cancer (NSCLC): A glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations[J]. ESMO Open, 2021, 6(5): 100260.
[22] Yonesaka K. HER2-/HER3-targeting antibody-drug conjugates for treating lung and colorectal cancers resistant to EGFR inhibitors[J]. Cancers (Basel), 2021, 13(5): 1047.
[23] Koyama K, Ishikawa H, Abe M, et al. Patritumab deruxtecan (HER3-DXd), a novel HER3 directed antibody drug conjugate, exhibits in vitro activity against breast cancer cells expressing HER3 mutations with and without HER2 overexpression[J]. PLoS One, 2022, 17(5): e0267027.
[24] Jänne P A, Baik C, Su W C, et al. Efficacy and safety of Patritumab Deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer[J]. Cancer Discovery, 2022, 12(1): 74-89.
[25] Shvartsur A, Bonavida B. Trop2 and its overexpression in cancers: Regulation and clinical/therapeutic implications[J]. Genes Cancer, 2015, 6(3-4): 84-105.
[26] Liu X, Deng J, Yuan Y, et al. Advances in Trop2-targeted therapy: Novel agents and opportunities beyond breast cancer[J]. Pharmacology & Therapeutics, 2022, 239: 108296.
[27] Okajima D, Yasuda S, Maejima T, et al. Datopotamab Deruxtecan, a novel TROP2-directed antibody-drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells[J]. Molecular Cancer Therapeutics, 2021, 20(12): 2329-2340.
[28] Spira A, Lisberg A, Sands J, et al. OA03.03 Datopotamab Deruxtecan (Dato-DXd; DS-1062), a TROP2 A DC, in patients with advanced NSCLC: Updated results of TROPION-PanTumor01 phase 1 study[J]. Journal of Thoracic Oncology, 2021, 16(3): S106-S107.
[29] Syed Y Y. Sacituzumab Govitecan: First approval[J]. Drugs, 2020, 80(10): 1019-1025.
[30] Heist R S, Guarino M J, Masters G, et al. Therapy of advanced non-small-cell lung cancer with an SN-38-Anti-Trop-2 drug conjugate, Sacituzumab Govitecan[J]. Journal of Clinical Oncology, 2017, 35(24): 2790-2797.
[31] Park K C, Richardson D R. The c-MET oncoprotein: Function, mechanisms of degradation and its targeting by novel anti-cancer agents[J]. Biochimica et Biophysica Acta, 2020, 1864(10): 129650.
[32] Wang J, Anderson M G, Oleksijew A, et al. ABBV-399, a c-Met antibody-drug conjugate that targets both MET-amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence[J]. Clinical Cancer Research, 2017, 23(4): 992-1000.
[33] Strickler J H, Weekes C D, Nemunaitis J, et al. First-in-Human Phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in patients with advanced solid tumors[J]. Journal of Clinical Oncology, 2018, 36(33): 3298-3306.
[34] Camidge D R, Moiseenko F, Cicin I, et al. OA15 Telisotuzumab Vedotin (teliso-v) monotherapy in patients with previously treated c-Met+ advanced non-small cell lung cancer[J]. Journal of Thoracic Oncology, 2021, 16(10): S875.
[35] Owen D H, Giffin M J, Bailis J M, et al. DLL3: An emerging target in small cell lung cancer[J]. Journal of Hematology & Oncology, 2019, 12(1): 61.
[36] Rudin C M, Pietanza M C, Bauer T M, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: A first-in-human, first-in-class, open-label, phase 1 study[J]. Lancet Oncology, 2017, 18(1): 42-51.
[37] Blackhall F, Jao K, Greillier L, et al. Efficacy and safety of Rovalpituzumab Tesirine compared with topotecan as second-line therapy in DLL3-High SCLC: Results from the phase 3 TAHOE study[J]. Journal of Thoracic Oncology, 2021, 16(9): 1547-1558.
[38] Malhotra J, Nikolinakos P, Leal T, et al. A phase 1-2 study of Rovalpituzumab Tesirine in combination with Nivolumab plus or Minus Ipilimumab in patients with previously treated extensive-stage SCLC[J]. Journal of Thoracic Oncology, 2021, 16(9): 1559-1569.
[39] Whiteman K R, Johnson H A, Mayo M F, et al. Lorvotuzumab mertansine, a CD56-targeting antibody-drug conjugate with potent antitumor activity against small cell lung cancer in human xenograft models[J]. MAbs, 2014, 6(2): 556-566.
[40] Socinski M A, Kaye F J, Spigel D R, et al. Phase 1/2 study of the CD56-targeting antibody-drug conjugate Lorvotuzumab Mertansine (IMGN901) in combination with Carboplatin/Etoposide in small-cell lung cancer patients with extensive-stage disease[J]. Clinical Lung Cancer, 2017, 18(1): 68-76.
[41] Bardia A, Messersmith W A, Kio E A, et al. Sacituzumab govitecan, a trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: Final safety and efficacy results from the phase I/II IMMU-132-01 basket trial[J]. Annals of Oncology, 2021, 32(6): 746-756.
[42] Guo J, Kumar S, Chipley M, et al. Characterization and higher-order structure assessment of an interchain cysteine-based ADC: Impact of drug loading and distribution on the mechanism of aggregation[J]. Bioconjugate Chemistry, 2016, 27(3): 604-615.
[43] Malik P, Phipps C, Edginton A, et al. Pharmacokinetic considerations for antibody-drug conjugates against cancer[J]. Pharmaceutical Research, 2017, 34(12): 2579-2595.
[44] Hamblett K J, Le T, Rock B M, et al. Altering antibody-drug conjugate binding to the neonatal Fc receptor impacts efficacy and tolerability[J]. Molecular Pharmaceutics, 2016, 13(7): 2387-2396.
[45] Khera E, Thurber G M. Pharmacokinetic and immunological considerations for expanding the therapeutic window of next-generation antibody-drug conjugates[J]. BioDrugs, 2018, 32(5): 465-480.
[46] Mahalingaiah P K, Ciurlionis R, Durbin K R, et al. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates[J]. Pharmacology and Therapeutics, 2019, 200: 110-125.
[47] Mecklenburg L. A brief introduction to antibody-drug conjugates for toxicologic pathologists[J]. Toxicologic Pathology, 2018, 46(7): 746-752.
[48] Hackshaw M D, Danysh H E, Singh J, et al. Incidence of pneumonitis/interstitial lung disease induced by HER2-targeting therapy for HER2-positive metastatic breast cancer[J]. Breast Cancer Research and Treatment, 2020, 183(1): 23-39.
[49] Abuhelwa Z, Alloghbi A, Alqahtani A, et al. Trastuzumab Deruxtecan-induced interstitial lung disease/pneumonitis in ERBB2-positive advanced solid malignancies: A systematic review[J]. Drugs, 2022, 82(9): 979-987.
[50] Tarantino P, Modi S, Tolaney S M, et al. Interstitial lung disease induced by anti-ERBB2 antibody-drug conjugates: A review[J]. JAMA Oncology, 2021, 7(12): 1873-1881.
[51] Jin Y, Schladetsch M A, Huang X, et al. Stepping forward in antibody-drug conjugate development[J]. Pharmacology and Therapeutics, 2022, 229: 107917.
[52] Singh A P, Shah D K. A "Dual" cell-level systems PK-PD model to characterize the bystander effect of ADC[J]. Journal of Pharmaceutical Sciences, 2019, 108(7): 2465-2475.
[53] Abelman R O, Wu B, Spring L M, et al. Mechanisms of resistance to antibody-drug conjugates[J]. Cancers (Basel), 2023, 15(4).
[54] Irie H, Kawabata R, Fujioka Y, et al. Acquired resistance to trastuzumab/pertuzumab or to T-DM1 in vivo can be overcome by HER2 kinase inhibition with TAS0728[J]. Cancer Science, 2020, 111(6): 2123-2131.
[55] Sipos G, Kuchler K. Fungal ATP-binding cassette(ABC) transporters in drug resistance & detoxification[J]. Current Drug Targets, 2006, 7(4): 471-481.
[56] Buongervino S, Lane M V, Garrigan E, et al. Antibody-drug conjugate efficacy in neuroblastoma: Role of payload, resistance mechanisms, target density, and antibody internalization[J]. Molecular Cancer Therapeutics, 2021, 20(11): 2228-2239.
[57] Goto Y, Su W C, Levy B P, et al. TROPION-Lung02: Datopotamab deruxtecan(Dato-DXd) plus pembrolizumab(pembro)with or without platinum chemotherapy(Pt-CT)in advanced non-small cell lung cancer[C]//ASCO Annual Meeting 2023. Chicago: American Society of Clinical Oncology, 2023.
[58] Lee Y T, Tan Y J, Oon C E. Molecular targeted therapy: Treating cancer with specificity[J]. European Journal of Pharmacology, 2018, 834: 188-196.
[59] Andreev J, Thambi N, Perez Bay A E, et al. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs[J]. Molecular Cancer Therapeutics, 2017, 16(4): 681-693.
[60] 张巍巍, 管同, 徐励, 等 . 全球抗肿瘤抗体药物研究热点分析[J]. 科技导报, 2023, 41(10): 92-100.
[61] de Goeij B E, Vink T, Ten N H, et al. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63[J]. Molecular Cancer Therapeutics, 2016, 15(11): 2688-2697.
[62] Yamazaki C M, Yamaguchi A, Anami Y, et al. Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance[J]. Nature Communications, 2021, 12(1): 3528.