专题:癌症防治

肺癌抗体偶联药物研究进展

  • 杨勐航 ,
  • 周彩存
展开
  • 同济大学附属上海市肺科医院肿瘤科,上海 200433
杨勐航,副主任医师,研究方向为肺癌的临床与基础,电子信箱:yangmenghang@tongji.edu.cn

收稿日期: 2023-07-28

  修回日期: 2023-08-29

  网络出版日期: 2023-09-28

Antibody-drug conjugates in lung cancer: Current research status, challenges and prospects

  • YANG Menghang ,
  • ZHOU Caicun
Expand
  • Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China

Received date: 2023-07-28

  Revised date: 2023-08-29

  Online published: 2023-09-28

摘要

抗体偶联药物(antibody-drug conjugates,ADC)兼有传统化疗药物的强大杀伤作用和抗体药物的精确靶向性,为解决肺癌治疗困境带来新的希望。概述了ADC的作用机制,介绍了ADC药物在肺癌中的临床研究进展,分析了ADC在肺癌中应用的挑战,展望了ADC在肺癌中的发展方向和应用前景。

本文引用格式

杨勐航 , 周彩存 . 肺癌抗体偶联药物研究进展[J]. 科技导报, 2023 , 41(18) : 43 -51 . DOI: 10.3981/j.issn.1000-7857.2023.18.006

Abstract

Antibody-drug conjugates (ADC) drugs have both the powerful killing effect of traditional chemotherapy drugs and the precise targeting of antibody drugs, bringing new hope for solving the dilemma of lung cancer treatment. This review article summarized the mechanism of action of antibody-drug conjugates (ADC), introduced the clinical research progress of ADC in lung cancer, analyzed the challenges of ADC application in lung cancer, and looked forward to the development direction and application prospects of ADC in lung cancer.

参考文献

[1] Siegel R L, Miller K D, Wagle N S, et al. Cancer statistics, 2023[J]. CA: A Cancer Journal for Clinicians, 2023, 73(1): 17-48.
[2] Oliver A L. Lung cancer: Epidemiology and screening[J]. Surgical Clinics of North America, 2022, 102(3): 335-344.
[3] Goldstraw P, Chansky K, Crowley J, et al. The IASLC Lung cancer staging project: Proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer[J]. Journal of Thoracic Oncology, 2016, 11(1): 39-51.
[4] Hirsch F R, Scagliotti G V, Mulshine J L, et al. Lung cancer: Current therapies and new targeted treatments[J]. The Lancet, 2017, 389(10066): 299-311.
[5] Lu T, Yang X, Huang Y, et al. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades[J]. Cancer Management and Research, 2019, 11: 943-953.
[6] Hafeez U, Parakh S, Gan H K, et al. Antibody-drug conjugates for cancer therapy[J]. Molecules, 2020, 25(20): 4764.
[7] Matsumura Y. Cancer stromal targeting therapy to overcome the pitfall of EPR effect[J]. Advanced Drug Delivery Reviews, 2020, 154: 142-150.
[8] Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody-drug conjugates[J]. Nature Reviews Drug Discovery, 2017, 16(5): 315-337.
[9] Yan M, Schwaederle M, Arguello D, et al. HER2 expression status in diverse cancers: Review of results from 37992 patients[J]. Cancer and Metastasis Reviews, 2015, 34(1): 157-164.
[10] Glover Z K, Wecksler A, Aryal B, et al. Physicochemical and biological impact of metal-catalyzed oxidation of IgG1 monoclonal antibodies and antibody-drug conjugates via reactive oxygen species[J]. MAbs, 2022, 14(1): 2122957.
[11] Giugliano F, Corti C, Tarantino P, et al. Bystander effect of antibody-drug conjugates: Fact or fiction?[J]. Current Oncology Reports, 2022, 24(7): 809-817.
[12] Ogitani Y, Hagihara K, Oitate M, et al. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity[J]. Cancer Science, 2016, 107(7): 1039-1046.
[13] Staudacher A H, Brown M P. Antibody drug conjugates and bystander killing: Is antigen-dependent internalisation required? [J]. British Journal of Cancer, 2017, 117(12): 1736-1742.
[14] Oh D Y, Bang Y J. HER2-targeted therapies-a role beyond breast cancer[J]. Nature Reviews Clinical Oncology, 2020, 17(1): 33-48.
[15] Cocco E, Lopez S, Santin A D, et al. Prevalence and role of HER2 mutations in cancer[J]. Pharmacology & Therapeutics, 2019, 199: 188-196.
[16] García-Alonso S, Ocaña A, Pandiella A. Trastuzumab emtansine: Mechanisms of action and resistance, cinical progress, and beyond[J]. Trends in Cancer, 2020, 6(2): 130-146.
[17] Li B T, Shen R, Buonocore D, et al. Ado-Trastuzumab Emtansine for patients with HER2-mutant lung cancers: Results from a Phase II basket trial[J]. Journal of Clinical Oncology, 2018, 36(24): 2532-2537.
[18] Li B T, Michelini F, Misale S, et al. HER2-mediated internalization of cytotoxic agents in ERBB2 amplified or mutant lung cancers[J]. Cancer Discovery, 2020, 10(5): 674-687.
[19] Wolska-Washer A, Robak T. Safety and tolerability of antibody-drug conjugates in cancer[J]. Drug Safety, 2019, 42(2): 295-314.
[20] Li B T, Smit E F, Goto Y, et al. Trastuzumab Deruxtecan in HER2-mutant non-small-cell lung cancer[J]. The New England Journal of Medicine, 2022, 386(3): 241-251.
[21] Riudavets M, Sullivan I, Abdayem P, et al. Targeting HER2 in non-small-cell lung cancer (NSCLC): A glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations[J]. ESMO Open, 2021, 6(5): 100260.
[22] Yonesaka K. HER2-/HER3-targeting antibody-drug conjugates for treating lung and colorectal cancers resistant to EGFR inhibitors[J]. Cancers (Basel), 2021, 13(5): 1047.
[23] Koyama K, Ishikawa H, Abe M, et al. Patritumab deruxtecan (HER3-DXd), a novel HER3 directed antibody drug conjugate, exhibits in vitro activity against breast cancer cells expressing HER3 mutations with and without HER2 overexpression[J]. PLoS One, 2022, 17(5): e0267027.
[24] Jänne P A, Baik C, Su W C, et al. Efficacy and safety of Patritumab Deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer[J]. Cancer Discovery, 2022, 12(1): 74-89.
[25] Shvartsur A, Bonavida B. Trop2 and its overexpression in cancers: Regulation and clinical/therapeutic implications[J]. Genes Cancer, 2015, 6(3-4): 84-105.
[26] Liu X, Deng J, Yuan Y, et al. Advances in Trop2-targeted therapy: Novel agents and opportunities beyond breast cancer[J]. Pharmacology & Therapeutics, 2022, 239: 108296.
[27] Okajima D, Yasuda S, Maejima T, et al. Datopotamab Deruxtecan, a novel TROP2-directed antibody-drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells[J]. Molecular Cancer Therapeutics, 2021, 20(12): 2329-2340.
[28] Spira A, Lisberg A, Sands J, et al. OA03.03 Datopotamab Deruxtecan (Dato-DXd; DS-1062), a TROP2 A DC, in patients with advanced NSCLC: Updated results of TROPION-PanTumor01 phase 1 study[J]. Journal of Thoracic Oncology, 2021, 16(3): S106-S107.
[29] Syed Y Y. Sacituzumab Govitecan: First approval[J]. Drugs, 2020, 80(10): 1019-1025.
[30] Heist R S, Guarino M J, Masters G, et al. Therapy of advanced non-small-cell lung cancer with an SN-38-Anti-Trop-2 drug conjugate, Sacituzumab Govitecan[J]. Journal of Clinical Oncology, 2017, 35(24): 2790-2797.
[31] Park K C, Richardson D R. The c-MET oncoprotein: Function, mechanisms of degradation and its targeting by novel anti-cancer agents[J]. Biochimica et Biophysica Acta, 2020, 1864(10): 129650.
[32] Wang J, Anderson M G, Oleksijew A, et al. ABBV-399, a c-Met antibody-drug conjugate that targets both MET-amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence[J]. Clinical Cancer Research, 2017, 23(4): 992-1000.
[33] Strickler J H, Weekes C D, Nemunaitis J, et al. First-in-Human Phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in patients with advanced solid tumors[J]. Journal of Clinical Oncology, 2018, 36(33): 3298-3306.
[34] Camidge D R, Moiseenko F, Cicin I, et al. OA15 Telisotuzumab Vedotin (teliso-v) monotherapy in patients with previously treated c-Met+ advanced non-small cell lung cancer[J]. Journal of Thoracic Oncology, 2021, 16(10): S875.
[35] Owen D H, Giffin M J, Bailis J M, et al. DLL3: An emerging target in small cell lung cancer[J]. Journal of Hematology & Oncology, 2019, 12(1): 61.
[36] Rudin C M, Pietanza M C, Bauer T M, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: A first-in-human, first-in-class, open-label, phase 1 study[J]. Lancet Oncology, 2017, 18(1): 42-51.
[37] Blackhall F, Jao K, Greillier L, et al. Efficacy and safety of Rovalpituzumab Tesirine compared with topotecan as second-line therapy in DLL3-High SCLC: Results from the phase 3 TAHOE study[J]. Journal of Thoracic Oncology, 2021, 16(9): 1547-1558.
[38] Malhotra J, Nikolinakos P, Leal T, et al. A phase 1-2 study of Rovalpituzumab Tesirine in combination with Nivolumab plus or Minus Ipilimumab in patients with previously treated extensive-stage SCLC[J]. Journal of Thoracic Oncology, 2021, 16(9): 1559-1569.
[39] Whiteman K R, Johnson H A, Mayo M F, et al. Lorvotuzumab mertansine, a CD56-targeting antibody-drug conjugate with potent antitumor activity against small cell lung cancer in human xenograft models[J]. MAbs, 2014, 6(2): 556-566.
[40] Socinski M A, Kaye F J, Spigel D R, et al. Phase 1/2 study of the CD56-targeting antibody-drug conjugate Lorvotuzumab Mertansine (IMGN901) in combination with Carboplatin/Etoposide in small-cell lung cancer patients with extensive-stage disease[J]. Clinical Lung Cancer, 2017, 18(1): 68-76.
[41] Bardia A, Messersmith W A, Kio E A, et al. Sacituzumab govitecan, a trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: Final safety and efficacy results from the phase I/II IMMU-132-01 basket trial[J]. Annals of Oncology, 2021, 32(6): 746-756.
[42] Guo J, Kumar S, Chipley M, et al. Characterization and higher-order structure assessment of an interchain cysteine-based ADC: Impact of drug loading and distribution on the mechanism of aggregation[J]. Bioconjugate Chemistry, 2016, 27(3): 604-615.
[43] Malik P, Phipps C, Edginton A, et al. Pharmacokinetic considerations for antibody-drug conjugates against cancer[J]. Pharmaceutical Research, 2017, 34(12): 2579-2595.
[44] Hamblett K J, Le T, Rock B M, et al. Altering antibody-drug conjugate binding to the neonatal Fc receptor impacts efficacy and tolerability[J]. Molecular Pharmaceutics, 2016, 13(7): 2387-2396.
[45] Khera E, Thurber G M. Pharmacokinetic and immunological considerations for expanding the therapeutic window of next-generation antibody-drug conjugates[J]. BioDrugs, 2018, 32(5): 465-480.
[46] Mahalingaiah P K, Ciurlionis R, Durbin K R, et al. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates[J]. Pharmacology and Therapeutics, 2019, 200: 110-125.
[47] Mecklenburg L. A brief introduction to antibody-drug conjugates for toxicologic pathologists[J]. Toxicologic Pathology, 2018, 46(7): 746-752.
[48] Hackshaw M D, Danysh H E, Singh J, et al. Incidence of pneumonitis/interstitial lung disease induced by HER2-targeting therapy for HER2-positive metastatic breast cancer[J]. Breast Cancer Research and Treatment, 2020, 183(1): 23-39.
[49] Abuhelwa Z, Alloghbi A, Alqahtani A, et al. Trastuzumab Deruxtecan-induced interstitial lung disease/pneumonitis in ERBB2-positive advanced solid malignancies: A systematic review[J]. Drugs, 2022, 82(9): 979-987.
[50] Tarantino P, Modi S, Tolaney S M, et al. Interstitial lung disease induced by anti-ERBB2 antibody-drug conjugates: A review[J]. JAMA  Oncology, 2021, 7(12): 1873-1881.
[51] Jin Y, Schladetsch M A, Huang X, et al. Stepping forward in antibody-drug conjugate development[J]. Pharmacology and Therapeutics, 2022, 229: 107917.
[52] Singh A P, Shah D K. A "Dual" cell-level systems PK-PD model to characterize the bystander effect of ADC[J]. Journal of Pharmaceutical Sciences, 2019, 108(7): 2465-2475.
[53] Abelman R O, Wu B, Spring L M, et al. Mechanisms of resistance to antibody-drug conjugates[J]. Cancers (Basel), 2023, 15(4).
[54] Irie H, Kawabata R, Fujioka Y, et al. Acquired resistance to trastuzumab/pertuzumab or to T-DM1 in vivo can be overcome by HER2 kinase inhibition with TAS0728[J]. Cancer Science, 2020, 111(6): 2123-2131.
[55] Sipos G, Kuchler K. Fungal ATP-binding cassette(ABC) transporters in drug resistance & detoxification[J]. Current Drug Targets, 2006, 7(4): 471-481.
[56] Buongervino S, Lane M V, Garrigan E, et al. Antibody-drug conjugate efficacy in neuroblastoma: Role of payload, resistance mechanisms, target density, and antibody internalization[J]. Molecular Cancer Therapeutics, 2021, 20(11): 2228-2239.
[57] Goto Y, Su W C, Levy B P, et al. TROPION-Lung02: Datopotamab deruxtecan(Dato-DXd) plus pembrolizumab(pembro)with or without platinum chemotherapy(Pt-CT)in advanced non-small cell lung cancer[C]//ASCO Annual Meeting 2023. Chicago: American Society of Clinical Oncology, 2023.
[58] Lee Y T, Tan Y J, Oon C E. Molecular targeted therapy: Treating cancer with specificity[J]. European Journal of Pharmacology, 2018, 834: 188-196.
[59] Andreev J, Thambi N, Perez Bay A E, et al. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs[J]. Molecular Cancer Therapeutics, 2017, 16(4): 681-693.
[60] 张巍巍, 管同, 徐励, 等 . 全球抗肿瘤抗体药物研究热点分析[J]. 科技导报, 2023, 41(10): 92-100.
[61] de Goeij B E, Vink T, Ten N H, et al. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63[J]. Molecular Cancer Therapeutics, 2016, 15(11): 2688-2697.
[62] Yamazaki C M, Yamaguchi A, Anami Y, et al. Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance[J]. Nature Communications, 2021, 12(1): 3528.
文章导航

/