专题:癌症防治

CDK4/6抑制剂耐药乳腺癌处理策略及其机制研究进展

  • 马嘉忆 ,
  • 殷文瑾 ,
  • 吴子平 ,
  • 陆劲松
展开
  • 上海交通大学医学院附属仁济医院乳腺外科,上海 200127
马嘉忆,博士研究生,研究方向为乳腺癌内分泌治疗耐药机制及其应对策略,电子信箱:longestma@163.com

收稿日期: 2023-05-26

  修回日期: 2023-05-26

  网络出版日期: 2023-09-28

基金资助

北京医学奖励基金会项目(YXJL-2020-0941-0737)

Advances of subsequent therapeutic strategies to overcome resistance to CDK4/6 inhibitors in breast cancer and its mechanisms

  • MA Jiayi ,
  • YIN Wenjin ,
  • WU Ziping ,
  • LU Jingsong
Expand
  • Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China

Received date: 2023-05-26

  Revised date: 2023-05-26

  Online published: 2023-09-28

摘要

概述了CDK4/6抑制剂耐药乳腺癌的治疗策略,分析了CDK4/6抑制剂跨线治疗、新型口服SERDs药物、PI3K/AKT/mTOR抑制剂、ADC类药物、AURKA抑制剂、HDAC抑制剂、免疫治疗和抗衰老药物在CDK4/6抑制剂进展后的临床研究结果及其相关机制。展望未来,可开展更多临床研究的潜在靶点。

本文引用格式

马嘉忆 , 殷文瑾 , 吴子平 , 陆劲松 . CDK4/6抑制剂耐药乳腺癌处理策略及其机制研究进展[J]. 科技导报, 2023 , 41(18) : 58 -66 . DOI: 10.3981/j.issn.1000-7857.2023.18.008

Abstract

This article provided an overview of current therapeutic strategies to overcome CDK4/6 inhibitor resistance in breast cancer and analyzed the clinical findings of CDK4/6 inhibitor cross-line therapy, novel oral SERDs, PI3K/AKT/mTOR inhibitors, ADC drugs, AURKA inhibitors, HDAC inhibitors, immunotherapeutic strategies and anti-senescence therapies after CDK4/6 inhibitor progression and the related mechanisms. Furthermore, we prospected the potential targets for clinical studies in the future.

参考文献

[1] Finn R S, Aleshin A, Slamon D J. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers[J]. Breast Cancer Research, 2016, 18(1): 17.
[2] Sherr C J. Cancer cell cycles[J]. Science, 1996, 274(5293): 1672-1677.
[3] Lange C A, Yee D. Killing the second messenger: Targeting loss of cell cycle control in endocrine-resistant breast cancer[J]. Endocrine-Related Cancer, 2011, 18(4): C19-C24.
[4] Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: A changing paradigm[J]. Nature Review Cancer, 2009, 9(3): 153-166.
[5] Rubin S M, Sage J, Skotheim J M. Integrating old and new paradigms of G1/S control[J]. Molecular Cell, 2020, 80(2): 183-192.
[6] Cardoso F, Paluch-Shimon S, Senkus E, et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5)[J]. Annals of Oncology, 2020, 31(12): 1623-1649.
[7] Gradishar W J, Moran M S, Abraham J, et al. Breast cancer, version 3.2022, NCCN clinical practice guidelines in oncology[J]. Journal of the National Comprehensive Cancer Network, 2022, 20(6): 691-722.
[8] Rugo H S, Finn R S, Dieras V, et al. Palbociclib plus letrozole as first-line therapy in estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer with extended follow-up[J]. Breast Cancer Research and Treatment, 2019, 174(3): 719-729.
[9] Tripathy D, Im S A, Colleoni M, et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): A randomised phase 3 trial[J]. The Lancet Oncology, 2018, 19(7): 904-915.
[10] Goetz M P, Toi M, Campone M, et al. MONARCH 3: Abemaciclib as initial therapy for advanced breast cancer[J]. Journal of Clinical Oncology, 2017, 35(32): 3638-3646.
[11] Finn R S, Martin M, Rugo H S, et al. Palbociclib and letrozole in advanced breast cancer[J]. The New England Journal of Medicine, 2016, 375(20): 1925-1936.
[12] Xu B, Hu X, Li W, et al. Palbociclib plus letrozole versus placebo plus letrozole in Asian postmenopausal women with oestrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer: primary results from PALOMA-4[J]. European Jour⁃
nal of Cancer, 2022, 175: 236-245.
[13] Fabi A, Ciccarese M, Scagnoli S, et al. Post-progression treatments after palbociclib plus endocrine therapy in HR+/HER2- metastatic breast cancer patients: What is the better choice?[J]. Oncology, 2021.
[14] Wander S A, Han H S, Zangardi M L, et al. Clinical outcomes with abemaciclib after prior CDK4/6 inhibitor progression in breast cancer: A multicenter experience[J]. Journal of the National Comprehensive Cancer Network, 2021: 1-8.
[15] Martin J M, Handorf E A, Montero A J, et al. Systemic therapies following progression on first-line CDK4/6-inhibitor treatment: analysis of real-world data[J]. Oncologist, 2022, 27(6): 441-446.
[16] Kalinsky K, Accordino M K, Chiuzan C, et al. Randomized phase II trial of endocrine therapy with or without ribociclib after progression on cyclin-dependent kinase 4/6 inhibition in hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic
breast cancer: MAINTAIN trial[J]. Journal of Clinical Oncology, 2023, 41(24): 4004-4013.
[17] Fribbens C, O'Leary B, Kilburn L, et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer[J]. Journal of Clinical Oncology, 2016, 34(25): 2961-2968.
[18] Lu Y, Liu W. Selective estrogen receptor degraders(SERDs): A promising strategy for estrogen receptor positive endocrine-resistant breast cancer[J]. Journal of Medical Chemistry, 2020, 63(24): 15094-15114.
[19] Bidard F C, Hardy-Bessard A C, Dalenc F, et al. Switch to fulvestrant and palbociclib versus no switch in advanced breast cancer with rising ESR1 mutation during aromatase inhibitor and palbociclib therapy (PADA-1): a randomised, open-label, multicentre, phase 3 trial[J]. The Lancet Oncology, 2022, 23(11): 1367-1377.
[20] Bidard F C, Kaklamani V G, Neven P, et al. Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: Results from the randomized
phase III EMERALD trial[J]. Journal of Clinical Oncology, 2022, 40(28): 3246-3256.
[21] Liang J, Zbieg J R, Blake R A, et al. GDC-9545 (giredestrant): A potent and orally bioavailable selective estrogen receptor antagonist and degrader with an exceptional preclinical profile for ER+ breast cancer[J]. Journal of Medical Chemistry, 2021, 64(16): 11841-11856.
[22] Jimenez MM, Lim E, Gregor MC, et al. Giredestrant (GDC-9545) vs physician choice of endocrine monotherapy (PCET) in patients (pts) with ER+ , HER2-locally advanced/metastatic breast cancer (LA/mBC): Primary analysis of the phase 2, randomised, open-label acelERA BC study[J]. Annals of Oncology, 2022, 33(S7): S633-S634.
[23] Tolaney S M, Chan A, Petrakova K, et al. AMEERA-3: Randomized phase II study of amcenestrant (oral selective estrogen receptor degrader) versus standard endocrine monotherapy in estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced
breast cancer[J]. Journal of Clinical Oncology, 2023, 41(24): 4014-4024.
[24] Ciruelos Gil E M. Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer[J]. Cancer Treatment Reviews, 2014, 40(7): 862-871.
[25] Mosele F, Stefanovska B, Lusque A, et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer[J]. Annals of Oncology, 2020, 31(3): 377-386.
[26] Abu-Khalaf M M, Alex Hodge K, Hatzis C, et al. AKT/mTOR signaling modulates resistance to endocrine therapy and CDK4/6 inhibition in metastatic breast cancers[J]. NPJ Precision Oncology, 2023, 7(1): 18.
[27] Michaloglou C, Crafter C, Siersbaek R, et al. Combined inhibition of mTOR and CDK4/6 is required for optimal blockade of E2F function and long-term growth inhibition in estrogen receptor-positive breast cancer[J]. Molecular Cancer Therapy, 2018, 17(5): 908-920.
[28] Cai Z, Wang J, Li Y, et al. Overexpressed cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors[J]. Science China-Life Sciences, 2023, 66(1): 94-109.
[29] O'Brien N A, McDermott M S J, Conklin D, et al. Targeting activated PI3K/mTOR signaling overcomes acquired resistance to CDK4/6-based therapies in preclinical models of hormone receptor-positive breast cancer[J]. Breast Cancer Research, 2020, 22(1): 89.
[30] Andre F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer[J]. The New England Journal of Medicine[J]. 2019, 380(20): 1929-1940.
[31] Rugo H S, Lerebours F, Ciruelos E, et al. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor(BYLieve): One cohort of a phase 2, multicentre, open-label, non-comparative study[J]. Lancet Oncology, 2021, 22(4): 489-498.
[32] Turner N C, Oliveira M, Howell S J, et al. Capivasertib in hormone receptor-positive advanced breast cancer[J]. The New England Journal of Medicine, 2023, 388(22): 2058-2070.
[33] Bardia A, Hurvitz S A, DeMichele A, et al. Phase I/II trial of exemestane, ribociclib, and everolimus in women with HR(+ )/HER2(- ) advanced breast cancer after progression on CDK4/6 inhibitors (TRINITI-1) [J]. Clinical Cancer Research, 2021, 27(15): 4177-4185.
[34] Chen Z, Wang Y, Warden C, et al. Cross-talk between ER and HER2 regulates c-MYC-mediated glutamine metabolism in aromatase inhibitor resistant breast cancer cells[J]. Journal of Steroid Biochemistry and Molecular Biology, 2015, 149: 118-127.
[35] Giuliano M, Trivedi M V, Schiff R. Bidirectional crosstalk between the estrogen receptor and human epidermal growth factor receptor 2 signaling pathways in breast cancer: molecular basis and clinical implications[J]. Breast Care (Basel), 2013, 8(4): 256-262.
[36] Vigano L, Locatelli A, Ulisse A, et al. Modulation of the estrogen/erbB2 receptors cross-talk by CDK4/6 inhibition triggers sustained senescence in estrogen receptor-and ErbB2-positive breast cancer[J]. Clinical Cancer Research, 2022, 28(10): 2167-2179.
[37] Wander S A, Cohen O, Gong X, et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer[J]. Cancer Discovery, 2020, 10(8): 1174-1193.
[38] Modi S, Jacot W, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer[J]. The New England Journal of Medicine, 2022, 387(1): 9-20.
[39] Goldenberg D M, Stein R, Sharkey R M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target[J]. Oncotarget, 2018, 9(48): 28989-29006.
[40] Aslan M, Hsu E C, Garcia-Marques F J, et al. Oncogene-mediated metabolic gene signature predicts breast cancer outcome[J]. NPJ Breast Cancer, 2021, 7(1): 141.
[41] Kalinsky K, Diamond J R, Vahdat L T, et al. Sacituzumab govitecan in previously treated hormone receptor-positive/HER2-negative metastatic breast cancer: Final results from a phase I/II, single-arm, basket trial[J]. Annals of Oncology, 2020, 31(12): 1709-1718.
[42] Rugo H S, Schmid P, Tolaney S M, et al. Health-related quality of life (HRQoL) in the phase III TROPiCS-02 acelERA BC study[J]. Annals of Oncology, 2022, 33(S7): S633-S634.
[23] Tolaney S M, Chan A, Petrakova K, et al. AMEERA-3: Randomized phase II study of amcenestrant (oral selective estrogen receptor degrader) versus standard endocrine monotherapy in estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer[J]. Journal of Clinical Oncology, 2023, 41(24): 4014-4024.
[24] Ciruelos Gil E M. Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer[J]. Cancer Treatment Reviews, 2014, 40(7): 862-871.
[25] Mosele F, Stefanovska B, Lusque A, et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer[J]. Annals of Oncology, 2020, 31(3): 377-386.
[26] Abu-Khalaf M M, Alex Hodge K, Hatzis C, et al. AKT/mTOR signaling modulates resistance to endocrine therapy and CDK4/6 inhibition in metastatic breast cancers[J]. NPJ Precision Oncology, 2023, 7(1): 18.
[27] Michaloglou C, Crafter C, Siersbaek R, et al. Combined inhibition of mTOR and CDK4/6 is required for optimal blockade of E2F function and long-term growth inhibition in estrogen receptor-positive breast cancer[J]. Molecular Cancer Therapy, 2018, 17(5): 908-920.
[28] Cai Z, Wang J, Li Y, et al. Overexpressed cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors[J]. Science China-Life Sciences, 2023, 66(1): 94-109.
[29] O'Brien N A, McDermott M S J, Conklin D, et al. Targeting activated PI3K/mTOR signaling overcomes acquired resistance to CDK4/6-based therapies in preclinical models of hormone receptor-positive breast cancer[J]. Breast Cancer Research, 2020, 22(1): 89.
[30] Andre F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer[J]. The New England Journal of Medicine[J]. 2019, 380(20): 1929-1940.
[31] Rugo H S, Lerebours F, Ciruelos E, et al. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor(BYLieve): One cohort of a phase 2, multicentre, open-label, non-comparative study[J]. Lancet Oncology, 2021, 22(4): 489-498.
[32] Turner N C, Oliveira M, Howell S J, et al. Capivasertib in hormone receptor-positive advanced breast cancer[J]. The New England Journal of Medicine, 2023, 388(22): 2058-2070.
[33] Bardia A, Hurvitz S A, DeMichele A, et al. Phase I/II trial of exemestane, ribociclib, and everolimus in women with HR(+ )/HER2(- )advanced breast cancer after progression on CDK4/6 inhibitors (TRINITI-1) [J]. Clinical Cancer Research, 2021, 27(15): 4177-4185.
[34] Chen Z, Wang Y, Warden C, et al. Cross-talk between ER and HER2 regulates c-MYC-mediated glutamine metabolism in aromatase inhibitor resistant breast cancer cells[J]. Journal of Steroid Biochemistry and Molecular Biology, 2015, 149: 118-127.
[35] Giuliano M, Trivedi M V, Schiff R. Bidirectional crosstalk between the estrogen receptor and human epidermal growth factor receptor 2 signaling pathways in breast cancer: molecular basis and clinical implications[J]. Breast Care (Basel), 2013, 8(4): 256-262.
[36] Vigano L, Locatelli A, Ulisse A, et al. Modulation of the estrogen/erbB2 receptors cross-talk by CDK4/6 inhibition triggers sustained senescence in estrogen receptor-and ErbB2-positive breast cancer[J]. Clinical Cancer Research, 2022, 28(10): 2167-2179.
[37] Wander S A, Cohen O, Gong X, et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer[J]. Cancer Discovery, 2020, 10(8): 1174-1193.
[38] Modi S, Jacot W, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer[J]. The New England Journal of Medicine, 2022, 387(1): 9-20.
[39] Goldenberg D M, Stein R, Sharkey R M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target[J]. Oncotarget, 2018, 9(48): 28989-29006.
[40] Aslan M, Hsu E C, Garcia-Marques F J, et al. Oncogene-mediated metabolic gene signature predicts breast cancer outcome[J]. NPJ Breast Cancer, 2021, 7(1): 141.
[41] Kalinsky K, Diamond J R, Vahdat L T, et al. Sacituzumab govitecan in previously treated hormone receptor-positive/HER2-negative metastatic breast cancer: Final results from a phase I/II, single-arm, basket trial[J]. Annals of Oncology, 2020, 31(12): 1709-1718.
[42] Rugo H S, Schmid P, Tolaney S M, et al. Health-related quality of life (HRQoL) in the phase III TROPiCS-02 acelERA BC study[J]. Annals of Oncology, 2022, 33(S7): S633-S634.
[23] Tolaney S M, Chan A, Petrakova K, et al. AMEERA-3: Randomized phase II study of amcenestrant (oral selective estrogen receptor degrader) versus standard endocrine monotherapy in estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer[J]. Journal of Clinical Oncology, 2023, 41(24): 4014-4024.
[24] Ciruelos Gil E M. Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer[J]. Cancer Treatment Reviews, 2014, 40(7): 862-871.
[25] Mosele F, Stefanovska B, Lusque A, et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer[J]. Annals of Oncology, 2020, 31(3): 377-386.
[26] Abu-Khalaf M M, Alex Hodge K, Hatzis C, et al. AKT/mTOR signaling modulates resistance to endocrine therapy and CDK4/6 inhibition in metastatic breast cancers[J]. NPJ Precision Oncology, 2023, 7(1): 18.
[27] Michaloglou C, Crafter C, Siersbaek R, et al. Combined inhibition of mTOR and CDK4/6 is required for optimal blockade of E2F function and long-term growth inhibition in estrogen receptor-positive breast cancer[J]. Molecular Cancer Therapy, 2018, 17(5): 908-920.
[28] Cai Z, Wang J, Li Y, et al. Overexpressed cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors[J]. Science China-Life Sciences, 2023, 66(1): 94-109.
[29] O'Brien N A, McDermott M S J, Conklin D, et al. Targeting activated PI3K/mTOR signaling overcomes acquired resistance to CDK4/6-based therapies in preclinical models of hormone receptor-positive breast cancer[J]. Breast Cancer Research, 2020, 22(1): 89.
[30] Andre F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer[J]. The New England Journal of Medicine[J]. 2019, 380(20): 1929-1940.
[31] Rugo H S, Lerebours F, Ciruelos E, et al. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor(BYLieve): One cohort of a phase 2, multicentre, open-label, non-comparative study[J]. Lancet Oncology, 2021, 22(4): 489-498.
[32] Turner N C, Oliveira M, Howell S J, et al. Capivasertib in hormone receptor-positive advanced breast cancer[J]. The New England Journal of Medicine, 2023, 388(22): 2058-2070.
[33] Bardia A, Hurvitz S A, DeMichele A, et al. Phase I/II trial of exemestane, ribociclib, and everolimus in women with HR(+ )/HER2(- ) advanced breast cancer after progression on CDK4/6 inhibitors (TRINITI-1) [J]. Clinical Cancer Research, 2021, 27(15): 4177-4185.
[34] Chen Z, Wang Y, Warden C, et al. Cross-talk between ER and HER2 regulates c-MYC-mediated glutamine metabolism in aromatase inhibitor resistant breast cancer cells[J]. Journal of Steroid Biochemistry and Molecular Biology, 2015, 149: 118-127.
[35] Giuliano M, Trivedi M V, Schiff R. Bidirectional crosstalk between the estrogen receptor and human epidermal growth factor receptor 2 signaling pathways in breast cancer: molecular basis and clinical implications[J]. Breast Care (Basel), 2013, 8(4): 256-262.
[36] Vigano L, Locatelli A, Ulisse A, et al. Modulation of the estrogen/erbB2 receptors cross-talk by CDK4/6 inhibition triggers sustained senescence in estrogen receptor-and ErbB2-positive breast cancer[J]. Clinical Cancer Research, 2022, 28(10): 2167-2179.
[37] Wander S A, Cohen O, Gong X, et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer[J]. Cancer Discovery, 2020, 10(8): 1174-1193.
[38] Modi S, Jacot W, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer[J]. The New England Journal of Medicine, 2022, 387(1): 9-20.
[39] Goldenberg D M, Stein R, Sharkey R M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target[J]. Oncotarget, 2018, 9(48): 28989-29006.
[40] Aslan M, Hsu E C, Garcia-Marques F J, et al. Oncogene-mediated metabolic gene signature predicts breast cancer outcome[J]. NPJ Breast Cancer, 2021, 7(1): 141.
[41] Kalinsky K, Diamond J R, Vahdat L T, et al. Sacituzumab govitecan in previously treated hormone receptor-positive/HER2-negative metastatic breast cancer: Final results from a phase I/II, single-arm, basket trial[J]. Annals of Oncology, 2020, 31(12): 1709-1718.
[42] Rugo H S, Schmid P, Tolaney S M, et al. Health-related quality of life (HRQoL) in the phase III TROPiCS-02 receptor-positive metastatic breast cancer[J]. Journal of Clinical Oncology, 2019, 37(14): 1169-1178.
[66] Herrera-Abreu M T, Palafox M, Asghar U, et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer[J]. Cancer Research, 2016, 76(8): 2301-2313.
文章导航

/