[1] Vandevyver S, Dejager L, Libert C. Comprehensive overview of the structure and regulation of the glucocorticoid receptor[J]. Endocrine Reviews, 2014, 35(4): 671-693.
[2] Menz G, Akdis C A, Blaser K, et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma[J]. Journal of Allergy and Clinical Immunology, 2004, 114(6): 1425-1433.
[3] 孟娟, 徐睿, 叶菁, 等. 变应性鼻炎的分类和诊断专家共识(2022, 成都)[J]. 中国眼耳鼻喉科杂志, 2022, 22(3): 215-224.
[4] Storms W. Pharmacologic approaches to daytime and nighttime symptoms of allergic rhinitis[J]. Journal of Allergy and Clinical Immunology, 2004, 114: 146-153.
[5] Smolensky M H, Lemmer B, Reinberg A E. Chronobiology and chronotherapy of allergic rhinitis and bronchial asthma[J]. Advanced Drug Delivery Reviews, 2007, 59(9-10): 852-882.
[6] Zhang Y, Lan F, Zhang L. Update on pathomechanisms and treatments in allergic rhinitis[J]. Allergy, 2022, 77(11): 3309-3319.
[7] Nakamura Y, Harama D, Shimokawa N, et al. Circadian clock gene Period2 regulates a time-of-day-dependent variation in cutaneous anaphylactic reaction[J]. Journal of Allergy and Clinical Immunology, 2011, 127(4): 1038-1045.
[8] Vandenberghe A, Lefranc M, Furlan A. An overview of the circadian clock in the frame of chronotherapy: From bench to bedside[J]. Pharmaceutics, 2022, 14(7): 14-24.
[9] Patke A, Young M W, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms[J]. Nature Reviews Molecular Cell Biology, 2020, 21(2): 67-84.
[10] Fagiani F, Di Marino D, Romagnoli A, et al. Molecular regulations of circadian rhythm and implications for physiology and diseases[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 41.
[11] Lu D, Zhao M, Chen M, et al. Circadian clock-controlled drug metabolism: Implications for chronotherapeutics[J]. Drug Metabolism and Disposition, 2020, 48(5): 395-406.
[12] Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks[J]. Annual Review of Physiology, 2010, 72(1): 517-549.
[13] Turek F W. Circadian clocks: Not your grandfather's clock[J]. Science, 2016, 354(6315): 992-993.
[14] Mohawk J A, Green C B, Takahashi J S. Central and peripheral circadian clocks in mammals[J]. Annual Review of Neuroscience, 2012, 35: 445-462.
[15] Ruan W, Yuan X, Eltzschig H K. Circadian rhythm as a therapeutic target[J]. Nature Reviews Drug Discovery, 2021, 20(4): 287-307.
[16] Green C B. Circadian posttranscriptional regulatory mechanisms in mammals[J]. Cold Spring Harbor Perspectives in Biology, 2018, 10(6): a030692.
[17] Lee H, Chen R, Lee Y, et al. Essential roles of CKI delta and CKI epsilon in the mammalian circadian clock[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21359-21364.
[18] Nakamura Y, Nakano N, Ishimaru K, et al. Inhibition of IgE-mediated allergic reactions by pharmacologically targeting the circadian clock[J]. Journal of Allergy and Clinical Immunology, 2016, 137(4): 1226-1235.
[19] Schibler U. BMAL1 dephosphorylation determines the pace of the circadian clock[J]. Genes & Development, 2021, 35(15-16): 1076-1078.
[20] Smolensky M H, Reinberg A, Labrecque G. Twenty-four hour pattern in symptom intensity of viral and allergic rhinitis: treatment implications[J]. The Journal of Allergy and Clinical Immunology, 1995, 95(5): 1084-1096.
[21] Kim H K, Kim H J, Kim J H, et al. Asymmetric expression level of clock genes in left vs. right nasal mucosa in humans with and without allergies and in rats: Circa⁃dian characteristics and possible contribution to nasal cycle[J]. PloS One, 2018, 13(3): e0194018.
[22] Ando N, Nakamura Y, Ishimaru K, et al. Allergen-specific basophil reactivity exhibits daily variations in seasonal allergic rhinitis[J]. Allergy, 2015, 70(3): 319-322.
[23] Leaker B R, Malkov V A, Mogg R, et al. The nasal mucosal late allergic reaction to grass pollen involves type 2 inflammation (IL-5 and IL-13), the inflammasome(IL-1β), and complement[J]. Mucosal Immunology, 2017, 10(2): 408-420.
[24] Wang X, Reece S P, Van Scott M R, et al. A circadian clock in murine bone marrow-derived mast cells modulates IgE-dependent activation in vitro[J]. Brain, Behavior, and Immunity, 2011, 25(1): 127-134.
[25] Nakamura Y, Nakano N, Ishimaru K, et al. Circadian regulation of allergic reactions by the mast cell clock in mice[J]. Journal of Allergy and Clinical Immunology, 2014, 133(2): 568-575.
[26] 刘果, 刘锋 . IL-33/ST2信号通路在变应性鼻炎中的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(6): 565-568.
[27] Nian J B, Zeng M, Zheng J, et al. Epithelial cells expressed IL-33 to promote degranulation of mast cells through inhibition on ST2/PI3K/mTOR-mediated autophagy in allergic rhinitis[J]. Cell Cycle, 2020, 19(10): 1132-1142.
[28] Kawauchi T, Ishimaru K, Nakamura Y, et al. Clock-dependent temporal regulation of IL-33/ST2-mediated mast cell response[J]. Allergology International: Official Journal of the Japanese Society of Allergology, 2017, 66(3): 472-478.
[29] Sulli G, Manoogian E N C, Taub P R, et al. Training the circadian clock, clocking the drugs, and drugging the clock to prevent, manage, and treat chronic diseases[J]. Trends in Pharmacological Sciences, 2018, 39(9): 812-827.
[30] Cardinali D P, Brown G M, Pandi-Perumal S R. Chronotherapy[J]. Handbook of Clinical Neurology, 2021, 179: 357-370.
[31] Dong D, Yang D, Lin L, et al. Circadian rhythm in pharmacokinetics and its relevance to chronotherapy[J]. Biochemical Pharmacology, 2020, 178: 114045.
[32] Urdaneta E R, Patel M K, Franklin K B, et al. Assessment of different cetirizine dosing strategies on seasonal allergic rhinitis symptoms: Findings of two randomized trials[J]. Allergy & Rhinology, 2018, 9: 1-11.
[33] Marmouz F, Giralt J, Izquierdo I. Morning and evening efficacy evaluation of rupatadine (10 and 20 mg), compared with cetirizine 10 mg in perennial allergic rhinitis: A randomized, double-blind, placebo-controlled trial[J]. Journal of Asthma and Allergy, 2011, 4: 27-35.
[34] Benninger M S, Ahmad N, Marple B F. The safety of intranasal steroids[J]. Otolaryngology-Head and Neck Surgery: Official Journal of American Academy of Otolaryngology-Head and Neck Surgery, 2003, 129(6): 739-750.
[35] Honma A, Yamada Y, Nakamaru Y, et al. Glucocorticoids reset the nasal circadian clock in mice[J]. Endocrinology, 2015, 156(11): 4302-4311.
[36] Pfaar O, Lou H, Zhang Y, et al. Recent developments and highlights in allergen immunotherapy[J]. Allergy, 2018, 73(12): 2274-2289.
[37] 顾瑜蓉, 李华斌 .《中国变应性鼻炎诊断和治疗指南(2022 年, 修订版)》解读[J]. 中国眼耳鼻喉科杂志, 2022, 22(2): 209-211.
[38] McMurray J C, Waters A M, Macomb C V, et al. Circadian and seasonal variations in subcutaneous allergen immunotherapy reactions[J]. Annals of Allergy, Asthma & Immunology, 2021, 127(5): 595-596.
[39] Bavishi A A, Grammer L C, Pongracic J, et al. Diurnal variations in subcutaneous allergen immunotherapy reactions[J]. Annals of Allergy, Asthma & Immunology, 2017, 118(1): 103-107.
[40] Aryan Z, Rezaei N. Toll-like receptors as targets for allergen immunotherapy[J]. Current Opinion in Allergy & Clinical Immunology, 2015, 15(6): 568-574.
[41] Silver A C, Arjona A, Walker W E, et al. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity[J]. Immunity, 2012, 36(2): 251-261.
[42] Orihara K, Saito H. Controlling the peripheral clock might be a new treatment strategy in allergy and immunology[J]. Journal of Allergy and Clinical Immunology, 2016, 137(4): 1236-1237.
[43] Fan Y, Piao C H, Hyeon E, et al. Gallic acid alleviates nasal inflammation via activation of Th1 and inhibition of Th2 and Th17 in a mouse model of allergic rhinitis[J]. International Immunopharmacology, 2019, 70: 512-519.
[44] Cheng F L, An Y F, Han Z Q, et al. Period2 gene regulates diurnal changes of nasal symptoms in an allergic rhinitis mouse model[J]. International Forum of Allergy & Rhinology, 2020, 10(11): 1236-1248.
[45] Yang H, Yang L T, Liu J, et al. Circadian protein CLK suppresses transforming growth factor- β expression in peripheral B cells of nurses with day-night shift rotation[J]. American Journal of Translational Research, 2018, 10(12): 4331-4337.
[46] Wang Q, Li L, Li C, et al. Circadian protein CLOCK modulates regulatory B cell functions of nurses engaging day-night shift rotation[J]. Cellular Signalling, 2022, 96: 110362.
[47] Nakamura Y, Ishimaru K, Shibata S, et al. Regulation of plasma histamine levels by the mast cell clock and its modulation by stress[J]. Scientific Reports, 2017, 7: 39934.
[48] Kolarski D, Miró-Vinyals C, Sugiyama A, et al. Reversible modulation of circadian time with chronophotopharmacology[J]. Nature Communications, 2021, 12(1): 3164.
[49] 张艳廷, 曹济民, 赵长青. 生物钟原理及其对变应性鼻炎的调控[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(1): 1-4.
[50] LeGates T A, Altimus C M, Wang H, et al. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons[J]. Nature, 2012, 491(7425): 594-598.
[51] G Y, H Z, Y L, et al. Alternation of circadian clock modulates forkhead box protein-3 gene transcription in CD4+ T cells in the intestine[J]. The Journal of Allergy and Clinical Immunology, 2016, 138(5): 1446-1449.
[52] Palomares O, Akdis M, Martín-Fontecha M, et al. Mechanisms of immune regulation in allergic diseases: The role of regulatory T and B cells[J]. Immunological Reviews, 2017, 278(1): 219-236.
[53] M X, M P, Y D, et al. C-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont[J]. Nature, 2018, 554(7692): 373-377.
[54] Cheng F L, An Y F, Xue J M, et al. Circadian rhythm disruption exacerbates Th2-like immune response in murine allergic airway inflammation[J]. International Forum of Allergy & Rhinology, 2022, 12(5): 757-770.
[55] Hesse J, Malhan D, Yalçin M, et al. An optimal time for treatment-predicting circadian time by machine learning and mathematical modelling[J]. Cancers, 2020, 12(11): 3103.
[56] Liu L P, Li M H, Zheng Y W. Hair follicles as a critical model for monitoring the circadian clock[J]. International Journal of Molecular Sciences, 2023, 24(3): 2407.