论文

乌兰布和沙漠东北缘小胡杨叶功能性状特征

  • 黄雅茹 ,
  • 马迎宾 ,
  • 张景波 ,
  • 赵英铭 ,
  • 郝需婷 ,
  • 韩春霞 ,
  • 菅凯敏 ,
  • 马海峰
展开
  • 1. 中国林业科学研究院沙漠林业实验中心,磴口 015200
    2. 国家林业和草原局防沙治沙工程技术研究中心,磴口 015200
    3. 乌兰布和沙漠综合治理国家长期科研基地,磴口 015200
    4. 内蒙古磴口荒漠生态系统国家定位观测研究站,磴口 015200
    5. 巴彦淖尔市林业和草原事业发展中心,巴彦淖尔 015000
    6. 巴彦淖尔市沙漠综合治理中心,巴彦淖尔 015000
黄雅茹,工程师,研究方向为荒漠化防治,电子信箱:hu_angyaru@126.com

收稿日期: 2022-03-24

  修回日期: 2022-09-26

  网络出版日期: 2023-09-28

基金资助

中央引导地方科技发展资金项目(2021ZY0058);中央级公益性科研院所基本科研业务费专项(CAFYBB2021MA005);国家自然科学基金项目(32001374);内蒙古自治区自然科学基金项目(2023QN03008)

Characteristics of leaf functional traits of Populus simonii×P. euphratica on the northeastern edge of Ulanbuh Desert

  • HUANG Yaru ,
  • MA Yingbin ,
  • ZHANG Jingbo ,
  • ZHAO Yingming ,
  • HAO Xuting ,
  • HAN Chunxia ,
  • JIAN Kaimin ,
  • MA Haifeng
Expand
  • 1. Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China
    2. Combat Desertification Engineering Technology Research Center, National Forestry and Grassland Administration, Dengkou 015200, China
    3. National Long-Term Scientific Research Base of comprehensive control in Ulan Buh Desert, National Forestry and Grassland Administration, Dengkou 015200, China
    4. Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Dengkou 015200, China
    5. Bayannur Forestry and Grassland Development Center, Bayannur 015000, China
    6. Bayannur Desert Comprehensive Control Center, Bayannur 015000, China

Received date: 2022-03-24

  Revised date: 2022-09-26

  Online published: 2023-09-28

摘要

通过研究不同栽植年限幼龄小胡杨的叶片性状,筛选出适合评价不同林龄适应性的指标。结果表明,小胡杨的叶形以披针形和卵形为主。小胡杨的净光合速率、气孔导度、蒸腾速率和胞间CO2浓度均随林龄的增加而增大,且不同林龄之间的差异显著(P<0.05)。小胡杨各项叶片性状之间均具有极显著的相关性(P<0.01)。净光合速率、气孔导度可以作为评价不同林龄小胡杨叶性状的主要因子,评价结果的可靠性随林龄增加而增加。

本文引用格式

黄雅茹 , 马迎宾 , 张景波 , 赵英铭 , 郝需婷 , 韩春霞 , 菅凯敏 , 马海峰 . 乌兰布和沙漠东北缘小胡杨叶功能性状特征[J]. 科技导报, 2023 , 41(18) : 92 -100 . DOI: 10.3981/j.issn.1000-7857.2023.18.012

Abstract

The leaf traits of Populus simonii × P.euphratica with different planting years were investigated and the suitable indexes for the adaptability evaluation of different forest ages was screened, which shall provide the theoretical basis for evaluating the adaptability of Populus simonii × P. euphratica in desert oasis. The leaf shape of Populus simonii × P. euphratica is mainly lanceolate and oval; the net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO2 concentration of Populus simonii × P.euphratica increase with the growth age, and there are significant differences between different forest ages (P<0.05), and the leaf traits of Populus euphratica have extremely significant correlations with each other (P<0.01), Net photosynthetic rate and stomatal conductance can be used as the main factors to evaluate leaf traits of Populus euphratica at different growth ages, the results of evaluating its leaf traits are more reliable with the increases of growth age.

参考文献

[1] Cho L, Wang X P, Wu X, et al. Relative effects of phylogeny, biological characters and environments on leaf traits in shrub biomes across central Inner Mongolia, China[J]. Journal of Plant Ecology, 2013, 3(6): 220-231.
[2] 王常顺, 汪诗平 . 植物叶片性状对气候变化的响应研究进展[J]. 植物生态学报, 2015, 39(2): 206-216.
[3] 靳莎, 闫淑君, 黄柳菁, 等. 植物叶功能性状间的权衡研究进展[J]. 四川林业科技, 2019, 40(5): 96-103.
[4] Wright I J, Westoby M, Reich P B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span[J]. Journal of Ecology, 2002, 90(3): 534-543.
[5] 鲍婧婷, 王进, 苏洁琼. 不同林龄柠条(Caragana korshinskii)的光合特性和水分利用特征[J]. 中国沙漠, 2016, 36(1): 199-205.
[6] Jin B, Wang L, Wang J, et al. The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana[J]. BMC Plant Biology, 2011, 11(1): 35-42.
[7] Fang X, Li Y, Nie J, et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.) [J]. Field Crops Research, 2018, 219: 160-168.
[8] 包永志, 刘廷玺, 段利民, 等. 科尔沁沙地混生小叶锦鸡儿和人工杨树光合特性及其对气候的响应[J]. 干旱区研究, 2019, 36(2): 420-429.
[9] Joshi S C, Chandra S, Palni L M S. Differences in photosynthetic characteristics and accumulation of osmoprotectants in saplings of evergreen plants grown inside and outside a glasshouse during the winter season[J]. Photosynthetica, 2007, 45(4): 594-600.
[10] Li X L, Hou X Y, Wu X H, et al. Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe[J]. Chinese Journal of Plant Ecology, 2014, 38(5): 440-451.
[11] 赵夏纬, 王一峰, 马文梅. 高寒草地不同坡向披针叶黄华蒸腾速率与叶性状的关系[J]. 生态学报, 2019, 39(7): 2494-2500.
[12] Barbosa M, Chitwood D H, Azevedo A A, et al. Bundle sheath extensions affect leaf structural and physiological plasticity in response to irradiance[J]. Plant, Cell & Environment, 2019, 42(5): 1575-1589.
[13] Pierangelini M, Stojkovic S, Orr P T, et al. Photosynthetic characteristics of two Cylindrospermopsis raciborskii strains differing in their toxicity[J]. Journal of Phycology, 2014, 50(2): 292-302.
[14] Jing Z, Chengzhang Z, Xueping L I, et al. The relationship between the net photosynthetic rate and leaf area and thickness of Phragmites australis in the grass lake wetlands of Jiayuguan[J]. Acta Ecologica Sinica, 2018, 38(17): 6084-6091.
[15] 文军, 赵成章, 李群, 等 . 黑河中游湿地胡杨蒸腾速率与叶性状的关联性分析[J]. 干旱区研究, 2021, 38(2): 429-437.
[16] 罗欢, 司建华, 赵春彦, 等 . 荒漠河岸林胡杨光合参数变化特征及影响因子研究[J]. 高原气象, 2020, 39(2): 393-401.
[17] 陆晓民, 孙锦, 郭世荣, 等. 低氧胁迫下24-表油菜素内酯对黄瓜幼苗叶片光合特性及多胺含量的影响[J]. 应用生态学报, 2012, 23(1): 140-146.
[18] 郭雯, 徐瑞晶, 漆良华, 等 . 竹类植物光合特性与叶片功能性状研究[J]. 世界林业研究, 2018, 31(4): 29-35.
[19] Knight C A, Ackerly D D. Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: Congeneric species from desert and coastal environments[J]. New Phytologist, 2003, 160(2): 337-347.
[20] Li L, Feng S D, Wang J B, et al. Relationship between photosynthetic characteristics and leaf functional traits of 12 plant species of marshes in Sanjiang plain[J]. Wetland Science, 2010, 8(3): 225-232.
[21] 马迎宾, 黄雅茹, 苏智, 等. 乌兰布和沙漠绿洲3种杨树叶片性状研究[J]. 中南林业科技大学学报, 2019, 39(8): 10-15.
[22] 冯伟, 孟和, 杨文斌, 等 . 小叶杨与胡杨杂交种(小×胡)幼苗抗旱性初步研究[J]. 干旱区资源与环境, 2014, 28(7): 166-170.
[23] 王方琳, 柴成武, 尉秋实, 等. 小叶杨×胡杨杂交种(小×胡杨)无菌培养体系初步研究[J]. 干旱区资源与环境, 2018, 32(11): 176-181.
[24] Tang Q Y, Wang J, Liu M H, et al. Chromosome behavior of meiosis in pollen mother cell of Populus simonii×P. euphratica[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(7): 1351-1358.
[25] 黄雅茹, 马迎宾, 苏智, 等 . 乌兰布和沙漠绿洲北抗杨家系 6 个无性系叶片性状研究[J]. 西北林学院学报, 2019, 34(3): 86-90, 103.
[26] 黄文娟, 李志军, 杨赵平, 等 . 胡杨异形叶结构型性状及其相互关系[J]. 生态学报, 2010, 30(17): 4636-4642.
[27] 吕中跃, 裘珍飞, 曾炳山, 等 . 黑木相思 14个无性系叶片性状变异分析[J]. 林业与环境科学, 2018, 34(4): 43-47.
[28] 何斌, 李青, 冯图, 等 . 不同林龄马尾松人工林针叶功能性状及其与土壤养分的关系[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 181-190.
[29] 左力翔, 李秧秧, 陈佳村. 陕北沙地高龄小叶杨光合速率下降的水力限制[J]. 应用生态学报, 2014, 25(6)1607-1614.
[30] 袁颖红, 樊后保, 吴建平, 等 . 不同年龄人工林尾巨桉(Eucalyptus urophylla×E.grandis)叶片光合特性及水分利用效率[J]. 应用与环境生物学报, 2016, 22(1): 58-63.
[31] Ogle K, Reynolds J F. Desert dogma revisited: coupling of stomatal conductance and photosynthesis in the desert shrub, Larrea tridentata[J]. Plant Cell & Environment, 2010, 25(7): 909-921.
[32] Peaucelle M, Bacour C, Ciais P, et al. Covariations between plant functional traits emerge from constraining parameterization of a terrestrial biosphere model[J]. Global Ecology and Biogeography, 2019, 28(9): 1351-1365.
[33] Long J D, Jackson B G, Wilkinson A, et al. Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland[J]. Journal of Ecology, 2019, 107(4): 1704-1719.
[34] Feng K, Zhao C, Wang Y, et al. Effects of depth of root cutting on the photosynthetic characteristics and dry matter accumulation of peanut[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(2): 188-192.
[35] Gong R, Gao Q. Research progress in the effects of leaf hydraulic characteristics on plant physiological functions[J]. Chinese Journal of Plant Ecology, 2015, 39(3): 300-308.
[36] Tan Y, Zhu D Z, Wei H R, et al. Effects of phytoplasma infection on structure and function of sweet cherry leaves[J]. Plant Physiology Journal, 2017, 53(7): 1306-1312.
[37] Zhao L M, Zheng D F, Feng N J, et al. Effects of plant growth regulators(PGRs) on photosynthetic characteristics and sugar accumulation in soybean leaves[J]. Soybean Science, 2008, 27(3): 442-441.
[38] Zhang J L, Zhu J J, Cao K F. Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China[J]. Trees, 2007, 21(6): 631-643.
[39] Rose L, Rubarth M C, Hertel D, et al. Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows[J]. Journal of Vegetation Science, 2013, 24(2): 239-250.
[40] 陈超君, 尹小红, 李莉蓉, 等 . 广西石韦叶片性状的变异度及主成分和聚类分析[J]. 时珍国医国药, 2009, 20(11): 2745-2748.
[41] 莫燕华, 马姜明, 苏静, 等 . 桂林岩溶石山檵木群落老龄林植物叶性状[J]. 广西植物, 2019, 39(8): 1059-1068.
[42] 刘茂秀, 史军辉, 王新英, 等 . 塔河中游不同生境天然胡杨林木的光合与蒸腾特性[J]. 西北林学院学报, 2021, 36(6): 9-15.
[43] Marron N, Ceulemans R. Genetic variation of leaf traits related to productivity in a Populus deltoides × Populus nigra family[J]. Canadian Journal of Forest Research, 2006, 36(2): 390-400.
[44] Goyal V K, Pandey S, Shukla R S, et al. Morphological characterization and genetic analysis in newly developed cytoplasmic lines of bread wheat[J]. AkiNik Publications, 2019, 7(1): 2262-2266
文章导航

/