专题:创新引领 自立自强——打造高质量科技创新策源地

量子因果序在量子信息过程中的应用

  • 陈耕 ,
  • 李传锋
展开
  • 中国科学技术大学物理学院,合肥 230026
陈耕,教授,研究方向为量子纠缠度量和量子精密测量,电子信箱:chengeng@ustc.edu.cn

收稿日期: 2023-07-20

  修回日期: 2023-09-11

  网络出版日期: 2023-10-27

Application of quantum causal order in quantum information processing

  • CHEN Geng ,
  • LI Chuanfeng
Expand
  • School of Physical Science, University of Science and Technology of China, Hefei 230026, China

Received date: 2023-07-20

  Revised date: 2023-09-11

  Online published: 2023-10-27

摘要

量子信息研究旨在利用量子资源实现超越经典极限的通信安全、计算能力和测量精度。一种新的量子资源即量子因果序被提出并被证明在一些量子信息过程中可以提供独特的优势。概述了量子信息中的量子资源,回顾了量子因果序在量子信息中的应用,并重点阐述其在量子精密测量任务中所能提供的超海森堡极限精度。未来这种新的资源可以在更多量子信息处理中带来本质的提升。

本文引用格式

陈耕 , 李传锋 . 量子因果序在量子信息过程中的应用[J]. 科技导报, 2023 , 41(19) : 43 -47 . DOI: 10.3981/j.issn.1000-7857.2023.19.004

Abstract

Quantum information research aims to use quantum resources to achieve communication security, computing power and measurement accuracy beyond classical limits. In recent years, a new quantum resource—quantum causal order—has been proposed and proven to be able to provide unique advantages in some kinds of quantum information processes. This article reviews the existing quantum resources and the application of quantum causal order in quantum information and focuses on the super-Heisenberg limit accuracy it can provide in quantum metrology tasks. This new quantum resource may potentially provide essential promotion in various quantum information processing.

参考文献

[1] Chiribella G D, Ariano G M, Perinotti P, et al. Beyond quantum computers[J]. 2009, arXiv: 0912.0195.
[2] Rubino G, Rozema L A, Feix A, et al. Experimental verification of an indefinite causal order[J]. Science Advances,2017, 3(3): e1602589.
[3] Chiribella G. Perfect discrimination of no-signalling channels via quantum superposition of causal structures[J].Physical Review A, 2012, 86(4): 040301.
[4] Yao X C, Fiurášek J, Lu H, et al. Experimental realization of programmable quantum gate array for directly probing commutation relations of Pauli operators[J]. Physical Review Letters, 2010, 105(12): 120402.
[5] Procopio L M, Moqanaki A, Araújo M, et al. Experimental superposition of orders of quantum gates[J]. Nature Communications, 2015, 6(1): 7913.
[6] Ebler D, Salek S, Chiribella G. Enhanced communication with the assistance of indefinite causal order[J]. Physical Review Letters, 2018, 120(12): 120502.
[7] Guo Y, Hu X M, Hou Z B, et al. Experimental transmission of quantum information using a superposition of causal orders[J]. Physical Review Letters, 2020, 124(3):030502.
[8] Napolitano M, Koschorreck M, Dubost B, et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit[J]. Nature, 2011, 471(7339): 486-489.
[9] Zwierz M, Pérez-Delgado C A, Kok P. Ultimate limits to quantum metrology and the meaning of the Heisenberg limit[J]. Physical Review A, 2012, 85(4): 042112.
[10] Berry D W, Hall M J W, Zwierz M, et al. Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates[J]. Physical Review A, 2012,86(5): 053813.
[11] Hall M J W, Wiseman H M. Does nonlinear metrology offer improved resolution? Answers from quantum information theory[J]. Physical Review X, 2012, 2(4): 041006.
[12] Chen G, Zhang L, Zhang W H, et al. Achieving Heisenberg-scaling precision with projective measurement on single photons[J]. Physical Review Letters, 2018, 121(6):060506.
[13] Chen G, Aharon N, Sun Y N, et al. Heisenberg-scaling measurement of the single-photon Kerr non-linearity using mixed states[J]. Nature Communications, 2018, 9(1):93.
[14] Zhao X, Yang Y, Chiribella G. Quantum metrology with indefinite causal order[J]. Physical Review Letters,2020, 124(19): 190503.
[15] Yin P, Zhao X, Yang Y, et al. Experimental superHeisenberg quantum metrology with indefinite gate order[J]. Nature Physics, 2023: 1-6.

 

文章导航

/