磁约束聚变能源具有安全、经济和环境友好的优点,是未来理想的战略能源,可为“双碳”目标的实现做出重大贡献。磁约束聚变是利用磁场将氘和氚燃料以等离子体的形式约束并发生聚变反应,被认为有希望彻底解决人类的能源问题,也是中国核能发展的长远目标。当前中国正在积极参加国际热核聚变实验堆(ITER)的建设,支持国内ITER专项的物理和工程技术研究,在吸收和消化ITER经验的基础上,自主设计以获取聚变能源为目标的中国聚变工程试验堆(CFETR)。聚变能源开发难度很大,机遇和挑战并存,需要长期持续攻关。
With the advantages of safety, economy and environmental friendliness, magnetic confinement fusion energy is an ideal strategic energy for the future and can make a significant contribution to the realization of the "double carbon" goal. Magnetic confinement fusion uses magnetic field to confine and fuse deuterium and tritium fuels in the form of plasma, which is considered to be a promising solution to the energy problem of mankind and a long-term goal for the development of nuclear energy in China. At present, China is actively participating in the construction of the International Thermonuclear Experimental Reactor (ITER), supporting domestic physics and engineering research, and designing the Chinese Fusion Engineering Testing Reactor (CFETR), with the goal of obtaining fusion energy on the basis of absorbing and digesting ITER experience. This article addresses both opportunities and challenges for fusion energy development which is very difficult and requires long-term sustained research.
[1] 杜祥琬, 叶奇蓁, 徐銤, 等. 核能技术方向研究及发展路线图[J]. 中国工程科学, 2018, 20(3): 17-24.
[2] 高翔, 万宝年, 宋云涛, 等. CFETR物理与工程研究进展[J]. 中国科学: 物理学力学天文学, 2019, 49(4): 045202.
[3] Shimomura Y, Spears W. Review of the ITER Project[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1369-1375.
[4] Keilhacker M, Watkins M L, JET Team. D-T experiments in the JET Tokamak[J]. Journal of Nuclear Materials, 1999, 266: 1-13.
[5] Federici G, Biel W, Gilbert M R, et al. European DEMO design strategy and consequences for materials[J]. Nuclear Fusion, 2017, 57(9): 092002.
[6] Gao X, Li J, Yang Y, et al. Long-pulse discharges by synergy of LHW and IBW heating in the HT-7 Tokamak[J]. Journal of Nuclear Materials, 2005, 337: 835-838.
[7] Liu Y, Ding X T, Yang Q W, et al. Recent advances in the HL-2A Tokamak experiments[J]. Nuclear Fusion, 2005, 45(10): 239-244.
[8] Wu S, EAST team. An overview of the EAST Project[J]. Fusion Engineering and Design, 2007, 82(5-14): 463471.
[9] Li J G, Wan Y X, EAST team. The experimental advanced superconducting Tokamak[J]. Engineering, 2021, 7: 1523-1528.
[10] Song Y T, Zou X L, Gong X Z, et al. Realization of thousand-second improved confinement plasma with Super I-mode in Tokamak EAST[J]. Science Advance, 2023, 9: eabq5273.
[11] Song Y T, Li J G, Wan Y X, et al. Engineering design of the CFETR machine[J]. Fusion Engineering and Design, 2022, 183: 113247.
[12] Creely A J, Greenwald M J, Ballinger S B, et al. Overview of the SPARC Tokamak[J]. Journal of Plasma Physics, 2020, 86(5): 865860502.
[13] Anand H, Bardsley O, Humphreys D, et al. Modelling, design and simulation of plasma magnetic control for the Spherical Tokamak for Energy Production (STEP)[J]. Fusion Engineering and Design, 2023, 194: 113724.
[14] Hasegawa A. A dipole field fusion reactor[J]. Comments on Plasma Physics and Controlled Fusion, 1987, 11(3): 147-151.
[15] Li J G, Wan Y X. Present state of Chinese magnetic fusion development and future plans[J]. Journal of Fusion Energy, 2019, 38: 113-124.
[16] Wan Y X, Li J G, Yong L, et al. Overview of the present progress and activities on the Chinese Fusion Engineering Test Reactor[J]. Nuclear Fusion, 2017, 57: 102009.
[17] Song Y T, Wu S T, Li J G, et al. Concept design of CFETR Tokamak machines[J]. IEEE Transactions on Plasma Science, 2014, 42 : 503-509
[18] Zhuang G, Li G, Li J, et al. Progress of the CFETR design[J]. Nuclear Fusion, 2019, 59: 112010.
[19] Meneghini O, Smith S P, Lao L L, et al. Integrated modeling applications for Tokamak experiments with OMFIT [J]. Nuclear Fusion, 2015, 55(8): 083008.
[20] Meneghini O, Lao L. Integrated modeling of Tokamak experiments with OMFIT[J]. Plasma and Fusion Research, 2013, 8: 2403009-2403009.
[21] Liu X, Qiu L, Li J, et al. Conceptual design of the cryogenic system and estimation of the recirculated power for CFETR[J]. Nuclear Fusion, 2016, 57: 016037.
[22] Liu C, Qiu Y, Zhang J, et al. Study on the temperature control mechanism of the tritium breeding blanket for CFETR[J]. Nuclear Fusion, 2017, 57: 124003.
[23] Li G S, Yang Y, Wang Y M, et al. Preliminary consideration of CFETR ITER-like case diagnostic system[J]. Review of Scientific Instruments, 2016, 87: 11D401.
[24] 李建刚, 宋云涛, 刘永. 聚变工程实验堆装置主机设计[M]. 北京: 科学出版社, 2015.
[25] Wu Y, Li J, Shen G, et al. Preliminary design of CFETR TF prototype coil[J]. Journal of Fusion Energy, 2021, 40 (1): 5.