专题:创新引领 自立自强——打造高质量科技创新策源地

自动飞行导引和控制系统适航审定技术

  • 章园媛 ,
  • 吴浩文
展开
  • 1. 中国商飞民用飞机试飞中心,上海 200030
    2. 上海航空器适航审定中心,上海 200030
章园媛,硕士研究生,研究方向为民机自动飞行控制系统飞行试验,电子信箱: zhangyuanyuan@comac.cc

收稿日期: 2022-04-08

  修回日期: 2022-06-11

  网络出版日期: 2023-10-27

基金资助

国家“综合交通运输与智能交通”重点专项(2021YFB1600600)

On airworthiness certification of automatic flight guidance and control system

  • ZHANG Yuanyuan ,
  • WU Haowen
Expand
  • 1. Civil Aircraft Flight Test Center of COMAC, Shanghai 200030, China
    2. Shanghai Aircraft Airworthiness Certification Center of CAAC, Shanghai 200030, China

Received date: 2022-04-08

  Revised date: 2022-06-11

  Online published: 2023-10-27

摘要

自动飞行导引和控制系统,其高度集成和日趋复杂的设计给民机型号项目的研制及适航审定带来挑战。分析了自动飞行导引和控制系统的适航文件体系,对相关咨询通告、设备标准及审定程序等适航文件进行归类并做详细解读,从研制和审查的角度明确了系统设计需求、审定基础的确认原则,在此基础上梳理出自动飞行导引和控制系统应满足的适航条款、符合性验证方法以及相应的审定要素。研究适用的自动飞行导引和控制系统适航审定技术,为研制初期评估系统的适航符合性、制定审定计划以及降低后期审定风险提供帮助。

本文引用格式

章园媛 , 吴浩文 . 自动飞行导引和控制系统适航审定技术[J]. 科技导报, 2023 , 41(19) : 84 -91 . DOI: 10.3981/j.issn.1000-7857.2023.19.009

Abstract

The airworthiness certification of automatic flight guidance and control system of civil aircraft faces challenges due to its highly integrated and increasingly complex design. In this paper, the airworthiness documentation system of automatic flight guidance and control system is analyzed. And corresponding airworthiness documents such as advisory circulars and equipment standard orders and certification procedures are classified and interpreted. On this basis, the determination principle of system design requirements and certification basis, as well as compliance methods and certification elements of automatic flight guidance and control system, are given in terms of system development and airworthiness certification. This paper provides help for evaluating the airworthiness compliance of AFGCS, especially for formulating certification plan in the early development stage and reducing the risk of the certification in the later stage.

参考文献

[1] 樊智勇, 王飞, 刘涛, 等. 进近着陆阶段自动飞行工作模式设计与仿真[J]. 计算机仿真, 2021, 38(3): 19-25.
[2] 高振兴, 徐彧. 民机垂直飞行模式设计与仿真验证研究[J]. 飞行力学, 2018, 36(3): 87-91.
[3] 郭滻, 龚光红, 韩亮, 等. 飞行控制系统建模与仿真研究[J]. 系统仿真学报, 2013, 25(Suppl 1): 46-51.
[4] 张亮, 董新民. 某型飞机飞行自动控制系统故障检查仪的设计与实现[J]. 航空维修与工程, 2005(2): 42-44.
[5] 吴成富, 冯乐, 隋丹, 等. 模型预测控制算法在飞机自动着陆控制系统中的应用[J]. 西北工业大学学报, 2004(2):140-144.
[6] 李爱军, 徐小野, 柯吉, 等. 基于能量的大型飞机纵向着陆控制研究[J]. 西北工业大学学报, 2011, 29(1): 22-26.
[7] 赵淑利, 李鑫 . 自动飞行与电传操纵一体化设计分析[J]. 系统仿真学报, 2008, 20(Suppl 2): 213-215.
[8] 王永, 杨宏 . 民用飞机机载设备适航与安全性设计[J]. 航空科学技术, 2014, 25(8): 27-33.
[9] 高振兴, 徐彧. 民机自动飞行模式设计规范与适航性分析[J]. 航空计算技术, 2017, 47(3): 80-84.
[10] 徐彧, 刘晖, 高振兴. 民机自动飞控系统模态分析及适航性研究[J]. 中国民航飞行学院学报, 2018, 29(3): 15-20.
[11] 谭珍珍. 民用飞机自动飞行控制系统需求分析与确认[J]. 科技展望, 2016, 26(15): 254-255.
[12] 贺娜 . 民用飞机系统功能危险性评估[J]. 软件导刊,2015, 14(8): 49-51.
[13] 中国民用航空局. 中国民用航空规章: 第25部 运输类飞机适航标准:CCAR-25-R4[S]. 北京: 中国民用航空局, 2011.
[14] 中国民用航空局 . 中国民用航空技术标准规定 自动飞行导引与控制系统(AFGCS)设备:CTSO-C198[S]. 北京: 中国民用航空局, 2013.
[15] Radio Technical Commission for Aeronautics. Minimum Operation Performance Standards for Automatic Flight Guidance and Control Systems and Equipment: DO-325 [S]. Washington, D. C.: Special Committees SC-220, 2010.
[16] Society of Automotive Engineers Aerospace. Aerospace Recommended Practice: Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment: SAE ARP 4761[S]. U.S.: SAE International, 1996.
[17] Radio Technical Commission for Aeronautics. Environmental Conditions and Test Procedures for Airborne Equipment: DO-160G[S]. Washington, D. C.: Special Committees: SC-135, 2010.
[18] Radio Technical Commission for Aeronautics. Software Considerations in Airborne Systems and Equipment Certification: DO-178B/C[S]. Washington, D. C.: Special Committees: SC-167, 1992/SC-205, 2004.
[19] Radio Technical Commission for Aeronautics. Design Assurance Guidance for Airborne Electronic Hardware: DO-254[S]. Washington, D.C.: Special Committees SC180, 2000.
[20] Federal Aviation Administration. Approval of Flight Guidance Systems: AC25.1329-1C CHG1[S]. Washington, D.C.: U.S. Department of Transportation, 2016.
[21] Federal Aviation Administration. Criteria for Approving Category I and Category II Weather Minima for Approach: AC120-29A[S]. Washington, D.C.: U.S. Department of Transportation, 2002.
[22] Federal Aviation Administration. Criteria for Approval of Category III Weather Minima for Takeoff, Landing, and Rollout: AC120-28D[S]. Washington, D.C.: U.S. Department of Transportation, 1999.
[23] Federal Aviation Administration. Flight Test Guide for Certification of Transport Category Airplanes: AC25-7D [S]. Washington, D. C.: U. S. Department of Transportation, 2018.
[24] Federal Aviation Administration. System Design and Analysis: AC1309-1A[S]. Washington, D. C.: U. S. Department of Transportation, 1988.
[25] Society of Automotive Engineers International. Aerospace Recommended Practice: Guidelines for Development of Civil Aircraft and Systems: SAE ARP 4754A[S]. U.S.: SAE International, 2010.
[26] Federal Aviation Administration. Certification of Electrical Wiring Interconnection Systems on Transport Category Airplanes: AC1701-1[S]. Washington, D.C.: U.S. Department of Transportation, 2007.
Options
文章导航

/