From the early use of mathematical tools to explore the mechanism of neural activity, to the use of artificial neural network models to simulate human intelligence, to the solution of specific problems based on deep networks, AI has developed over the past 80 years and has now entered the era of foundation intelligence (FI), which is characterized by its foothold in large models, serving the broad social groups. The development of large models faces a series of challenges. First, the quality and quantity of data necessary for large models training need to be improved. Second, high-end computing resource is limited, and model training has high power consumption and high carbon emissions, which brings environmental problems. Third, it is the socialization of large models that brings about social development problems such as discrimination and prejudice, the spread of false information, invasion of privacy, and impact on employment. In order to overcome the aforementioned challenges, it is essential to build a federal ecosystem (including federal data, federal control, federal management and federal services) with support of block chain and decentralized autonomous organizations (TRUE+DAO, TAO), and provide solutions for the development of artificial intelligence in the new era.
[1] Zhou C, Li Q, Li C, et al. A comprehensive survey on pretrained foundation models: A history from BERT to ChatGPT[J]. arXiv, 2023, arXiv:2302.09419.
[2] Wang F Y, Zhang J J, Hang X, et al. Where does AlphaGo go: From Church-Turing thesis to AlphaGo thesis and beyond[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(2): 113-120.
[3] Wang F Y, Miao Q H, Li X, et al. What does ChatGPT say: The DAO from algorithmic intelligence to linguistic intelligence[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(3): 575-579.
[4] Ouyang L, Wu J, Jiang X, et al. Training language models to follow instructions with human feedback[J]. arXiv, 2022, arXiv:2203.02155.
[5] Touvron H, Lavril T, Izacard G, et al. LLaMA: Open and efficient foundation language models[J]. arXiv, 2023, arXiv:2302.13971.
[6] Wang F Y, Ding W W, Wang X, et al. The DAO to DeSci: AI for free, fair, and responsibility sensitive sciences [J]. IEEE Intelligent Systems, 2022, 37(2): 16-22.
[7] Ding W W, Hou J, Li J J, et al. DeSci based on Web3 and DAO: A comprehensive overview and reference model [J]. IEEE Transactions on Computational Social Systems, 2022, 9(5):1563-1573.
[8] 李娟娟, 秦蕊, 丁文文, 等 . 基于 Web3的去中心化自治组织与运营新框架[J]. 自动化学报, 2023, 49(5): 985-998.
[9] Miao Q H, Zheng W B, Lv Y S, et al. DAO to HANOI via DeSci: AI paradigm shifts from AlphaGo to ChatGPT [J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(4): 877-897.
[10] 缪青海, 王雨桐, 吕宜生, 等. McCulloch-Pitts人工神经元模型80周年纪念:思想、方法与意义[J]. 智能科学与技术学报, 2023, 5(2): 133-142.
[11] 王飞跃, 缪青海. 人工智能驱动的科学研究新范式:从 AI4S 到智能科学[J]. 中国科学院院刊, 2023, 38(4):536-540.
[12] 杨静, 王晓, 王雨桐, 等 . 平行智能与 CPSS: 三十年发展的回顾与展望[J]. 自动化学报, 2023, 49(3): 614-634
[13] Miao Q H, Lv Y S, Huang M, et al. Overview and perspective for computational learning across Syn2Real and Sim2Real[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(3): 603-631.
[14] Wang F Y. Parallel intelligence in Metaverses: Welcome to Hanoi[J]. IEEE Intelligent Systems, 2022, 37(1): 1620.
[15] Li X, Tian Y L, Ye P J, et al. A novel scenarios engineering methodology for foundation models in Metaverse [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(4): 2148-2159.
[16] Wang F Y. New control paradigm for Industry 5.0: From big models to foundation control and management[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(8): 1643-1646.
[17] 卢经纬, 郭超, 戴星原, 等. 问答ChatGPT之后: 超大预训练模型的机遇和挑战[J]. 自动化学报, 2023, 49(4):705-717.
[18] Wang F Y, Qin R, Chen Y Z, et al. Federated ecology:Steps toward confederated intelligence[J]. IEEE Transactions on Computational Social Systems, 2021, 8(2): 271278.
[19] Wang F Y, Zhang W S, Tian Y L, et al. Federated data: Toward new generation of credible and trustable artificial intelligence[J]. IEEE Transactions on Computational Social Systems, 2021, 8(3): 538-545.
[20] 李娟娟, 王晓, 袁勇, 等 . 基于区块链技术的数据共享方法研究进展[J]. 复杂性与智能化, 2021, 17(3): 30-37.
[21] Wang F Y, Zhu J, Qin R, et al. Federated control: Toward information security and rights protection[J]. IEEE Transactions on Computational Social Systems, 2021, 8 (4): 793-798.
[22] 朱静, 王飞跃, 田永林, 等. 联邦控制: 面向信息安全和权益保护的分布式控制方法[J].自动化学报, 2021, 47(8): 1912-1920.
[23] Wang F Y. The DAO to MetaControl for MetaSystems in Metaverses: The system of parallel control systems for knowledge automation and control intelligence in CPSS [J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9 (11): 1899-1908.
[24] Wang F Y, Qin R, Li J J, et al. Federated management: Toward federated services and federated security in federated ecology[J]. Transactions on Computational Social Systems, 2021, 8(6): 1283-1290.
[25] Li J J, Qin R, Wang F Y. The future of management: DAO to smart organizations and intelligent operations[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(6): 3389-3399.
[26] Wang X X, Yang J, Wang Y T, et al. Steps toward Industry 5.0: Building“6S”parallel industries with cyberphysical-social intelligence[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(8): 1692-1703.
[27] Lin Y L, Na X X, Wang D, et al. Mobility 5.0: Smart logistics and transportation services in Cyber-Physical-Social systems[J]. IEEE Transactions Intelligent Vehicels, 2023, 8(6): 3527-3532.
[28] Ye P J, Wang F Y. Parallel population and parallel human-A Cyber-Physical social approach[J]. IEEE Intelligent Systems, 2022, 37(5): 19-27.
[29] Wang F Y, Qin R, Wang X, et al. MetaSocieties in Metaverse: MetaEconomics and MetaManagement for MetaEnterprises and MetaCities[J]. Transactions on Computational Social Systems, 2022, 9(1): 2-7.