专题:创新引领 自立自强——打造高质量科技创新策源地

Chiplet技术发展现状

  • 项少林 ,
  • 郭茂 ,
  • 蒲菠 ,
  • 方刘禄 ,
  • 刘淑娟 ,
  • 王少勇 ,
  • 孔宪伟 ,
  • 郑拓 ,
  • 刘军 ,
  • 赵明 ,
  • 郝沁汾 ,
  • 孙凝晖
展开
  • 1. 合肥复睿微电子有限公司,合肥 230041
    2. 上海市微电子材料与元器件微分析专业技术服务平台,上海 201210
    3. 宁波德图科技有限公司,宁波 315800
    4. 芯耀辉科技有限公司,珠海 519031
    5. 湖北江城实验室,武汉 430205
    6. 超聚变数字技术有限公司,东莞 523106
    7. 中国电子技术标准化研究院,北京 100007
    8. 芯和半导体科技(上海)股份有限公司,上海 201210
    9. 无锡芯光互连技术研究院,无锡 214104
    10. 中国科学院计算技术研究所,北京 100086
项少林,架构师,研究方向为多核处理器,电子信箱:erick.xiang@e-genesys.com;郭茂,正高级工程师,研究方向为微电子先进封装,电子信箱:gthriving@hotmail.com;蒲菠,正高级工程师,研究方向为电子设计自动化(EDA),电子信箱:pubo@detooltech.com;方刘禄,高级工程师,研究方向为高速接口电路设计,电子信箱:jacky.fang@akrostar-tech.com;刘淑娟,工程师,研究方向为三维集成工艺,电子信箱:joy_liu@yangtzelabs.ac.cn;王少勇,高级工程师,研究方向为计算机系统结构,电子信箱:wangshaoyong@xfusion. com;孔宪伟,高级工程师,研究方向为集成电路测试,电子信箱:kongxw@cesi.cn;郑拓,工程师,研究方向为微电子先进封装设计,电子信箱:tuo.zheng@xpeedic.com;刘军,工程师,研究方向为半导体先进封装,电子信箱:liujun@iicit.net;赵明,工程师,研究方向为芯粒标准技术,电子信箱:zhaoming@iicit.net;孙凝晖,研究员,研究方向为计算机系统结构、高性能计算机,电子信箱:snh@ict.ac.cn

收稿日期: 2023-05-22

  修回日期: 2023-07-22

  网络出版日期: 2023-10-27

基金资助

国家重点研发计划项目(2022YFB4401501)

Overview of the development status of chiplet technology

  • XIANG Shaolin ,
  • GUO Mao ,
  • PU Bo ,
  • FANG Liulu ,
  • LIU Shujuan ,
  • WANG Shaoyong ,
  • KONG Xianwei ,
  • ZHENG Tuo ,
  • LIU Jun ,
  • ZHAO Ming ,
  • HAO Qinfen ,
  • SUN Ninghui
Expand
  • 1. Hefei Geneturino Microelectronics Co., Ltd., Hefei 230041, China
    2. Shanghai Professional Technical Service Platform of Microanalysis for Microelectronics Materials and Components, Shanghai
    201210, China
    3. DeTooLIC Technology, Co., Ltd., Ningbo 315800, China
    4. Akrostar Technology Co., Ltd., Zhuhai 519031, China
    5. Hubei Yangtze Memory Laboratories, Wuhan 430205, China
    6. xFusion Digital Technologies Co., Ltd., Dongguan 523106, China
    7. China Electronics Standardization Institute, Beijing 100007, China
    8. Xpeedic Co., Ltd., Shanghai 201210, China
    9. Wuxi Institute of Interconnect Technology, Wuxi 214104, China
    10. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100086, China

Received date: 2023-05-22

  Revised date: 2023-07-22

  Online published: 2023-10-27

摘要

Chiplet(芯粒)技术是近年来兴起的新一代集成电路技术,因其具有提升良率、突破光罩极限、芯片架构灵活、芯片组件技术供应货架化等特点,受到产业界的广泛重视。为进一步推动chiplet技术在中国的发展,梳理了chiplet技术的应用场景,分析了chiplet中的各种核心组件技术,阐述了在chiplet技术开发中可能出现的各种技术挑战,回顾了中国chiplet标准的发展情况,最后针对中国发展chiplet技术提出了建议。

本文引用格式

项少林 , 郭茂 , 蒲菠 , 方刘禄 , 刘淑娟 , 王少勇 , 孔宪伟 , 郑拓 , 刘军 , 赵明 , 郝沁汾 , 孙凝晖 . Chiplet技术发展现状[J]. 科技导报, 2023 , 41(19) : 113 -131 . DOI: 10.3981/j.issn.1000-7857.2023.19.013

Abstract

Chiplet technology is a new generation of integrated circuit technology that has emerged in recent years. It has been widely recognized by the industry due to its excellent characteristics such as improving yield, breaking the limit of reticle size, flexibility in chip architecture, and standardization of IP supply chain. To further promote the development of chiplet technology in China, this article summarizes the application scenarios of chiplet technology, analyzes various core component technologies, elaborates on various technical challenges that may arise in the development of chiplet technology, reviews the development of China’s chiplet standards, and finally, puts forward some suggestions for the development of chiplet technology in China.

参考文献

[1] Intel PR. Intel architecture day 2021[EB/OL]. (2021-0819) [2023-06-20]. https://www. intel. com/content/www/us/ en/newsroom/resources/press-kit-architecture-day-2021. html.
[2] Peng V. 4th Gen AMD EPYC processor architecture[EB/ OL]. (2022-11-11) [2023-06-20]. https://www. amd. com/ en/campaigns/epyc-9004-architecture.
[3] Xia J, Cheng C, Zhou X, et al. Kunpeng 920: The first 7nm chiplet-based 64-core arm soc for cloud services[J]. IEEE Micro, 2021, 41(5): 67-75.
[4] 张建锋 . 倚天云服务器[EB/OL]. (2021-10-19) [2023-06-20]. https://www.aliyun.com/product/ecs/yitian.
[5] 张戈 . 龙芯 3D5000[EB/OL]. (2023-04-08) [2023-06-20]. https://www.loongson.cn/product/show?id=21.
[6] Liao H. DaVinci: A scalable architecture for neural network computing[C]//Hot Chips Symposium 2019. Stanford University, CA, USA: IEEE, 2019: 1-44.
[7] 陈天石. 思元370芯片[EB/OL]. (2021-11-03) [2023-0620]. https://www.cambricon.com/index.php?m=content&c= index&a=lists&catid=360.
[8] Peng V. AMD Instinct MI series accelerators[EB/OL]. (2021-11-09)[2023-06-20]. https://www.amd.com/en/graphics/instinct-server-accelerators.
[9] Huang J. NVIDIA H100 tensor core GPU[EB/OL]. (202203-22) [2023-06-20]. https://www.nvidia.com/en-us/datacenter/h100/.
[10] Hong M, Xu L J. Biren BR100 GPGPU: Accelerating datacenter scale AI computing[C]//Hot Chips Symposium 2022. Online, USA: IEEE, 2022: 1-22.
[11] Liu R, Feng C. AI compute chip from enflame[C]//Hot Chips Symposium 2021. Online, USA: IEEE, 2021.
[12] Intel PR. Introducing intel agilex M-series FPGAs[EB/ OL]. (2022-03-07) [2023-06-20]. https://www.intel.com/ content/www/us/en/newsroom/article/introducing-intelagilex-m-series-fpgas.html.
[13] Agrawal A, Kim C. Intel Tofino2-A 12.9Tbps P4-programmable ethernet switch[C]//Hot Chips Symposium 2020. Palo Alto, CA, USA: IEEE, 2020: 18-22.
[14] Cook T. Apple unveils M1 Ultra, the world's most powerful chip for a personal computer[EB/OL]. (2022-03-08) [2023-06-20]. https://www.apple.com/tn/newsroom/2022/ 03/apple-unveils-m1-ultra-the-worlds-most-powerfulchip-for-a-personal-computer/.
[15] Peng V. AMD Ryzen PRO desktop processors[EB/OL]. (2023-06-13) [2023-06-20]. https://www. amd. com/en/ ryzen-pro.
[16] Feldman A. CS-2: A revolution in AI infrastructure[EB/ OL]. (2021-04-06) [2023-06-20]. https://www. cerebras. net/product-system/.
[17] 胡振东 . 多物理场耦合技术的研究进展与发展趋势 [EB/OL]. [2023-06-20]. https://www. renrendoc. com/paper/205171074.html.
[18] 黄永安, 尹周平, 熊有伦. 热-电-位移耦合多体系统的多物理场分析[C]//第九届全国振动理论及应用学术会议暨中国振动工程学会成立 20 周年庆祝大会 . 杭州: 浙江大学, 2007.
[19] 武传松, 陆皓, 魏艳红. 焊接多物理场耦合数值模拟的研究进展与发展动向[C]//第十六次全国焊接学术会议. 镇江: 中国机械工程学会, 2011: 1001-1382.
[20] Miki S, Taneda H, Kobayashi N. Development of 2.3D high density organic package using low temperature bonding process with Sn-Bi solder[C]//IEEE Electronic Components & Technology Conference-2019. Baltimore, Maryland, USA: IEEE/ECTC Proceedings, 2019: 15991604.
[21] Yu D. TSMC packaging technologies for chiplets and 3D [C]//Hot Chips Symposium 2021. Online, USA: IEEE, 2021.
[22] Mahajan R, Sankman R, Patel N. Embedded multi-die interconnect bridge(EMIB): A high-density, high-bandwidth packaging interconnect[C]//IEEE Electronic Components & Technology Conference-2016. Las Vegas, Nevada, USA: IEEE/ECTC Proceedings, 2016: 557-565.
[23] Key Chung C. SPIL technology, fanout-WLP, FO-EB [EB/OL]. (2020-09-18) [2023-06-20]. https://www. spil. com.tw/TechnologyData/FanOutWLP.
[24] Peng V. AMD 3D V-Cache technology: Innovative 3D stacking technology for server and desktop applications [EB/OL]. (2021-12-14)[2023-06-20]. https://www.amd. com/zh-hans/technologies/3d-v-cache.
[25] Wang T Q, Feng F, Xiang S L, et al. Application defined on-chip networks for heterogeneous chipletchiplets: An implementation perspective[C]//2022 IEEE International Symposium on High-Performance Computer Architectur(HPCA 2022). Seoul, South Korea: IEEE, 2022: 1198-1210.
[26] Parasar M, Jerger N E, Gratz P V, et al. SWAP: Synchronized weaving of adjacent packets for network deadlock resolution[C]//The 52nd Annual IEEE/ACM International Symposium. Columbus, USA: ACM, 2019.
[27] Yin J M, Lin Z F, Kayiran O, et al. Modular routing design for chipletchiplet-based systems[C]//2018 ACM/ IEEE 45th Annual International Symposium on Computer Architecture(ISCA), CA, USA: IEEE, 2018.
[28] 虞振洋. 基于多物理场耦合特性的电气设备分析与设计[D]. 南京: 南京航空航天大学, 2015.
[29] Pu B. Design of 2.5D interposer in high bandwidth memory and through silicon via for high speed signal[J]. IEEE, 2020, doi:10.36227/techrxiv.12950261.
[30] Kim J, Chekuri V C K, Rahman N M, et al. Chiplet/interposer co-design for power delivery network optimization in heterogeneous 2.5-D ICs[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(12): 2148-2157.
[31] 张鹏, 孙晓冬, 朱家和, 等 . 集成微系统多物理场耦合效应仿真关键技术综述[J]. 电子与封装, 2021, 21(10): 46-58.
文章导航

/