专题:粮食安全专题

盐渍农田“地下水效益区间”的内涵、研究重点及展望

  • 赵英
展开
  • 1. 鲁东大学资源与环境工程学院,烟台 264039
    2. 鲁东大学现代农业高质量发展产教融合东营基地, 东营 257509
赵英, 教授, 研究方向为土壤水文过程及其调控, 电子信箱: yzhaosoils@gmail.com

收稿日期: 2021-06-24

  修回日期: 2021-12-24

  网络出版日期: 2023-11-06

基金资助

山东省自然科学基金杰出青年项目(ZR2019JQ12);泰山学者青年专家项目(201812096)

The concept, scientific issues and prospect of the groundwater benefit zone in the saline farmland

  • ZHAO Ying
Expand
  • 1. College of Resources and Environmental Engineering, Ludong University, Yantai 264039, China
    2. Ludong University Dongying Base of Integration between Industry and Education for High-quality Development of Modern Agriculture, Dongying 257509, China

Received date: 2021-06-24

  Revised date: 2021-12-24

  Online published: 2023-11-06

摘要

以地下水-土壤-植物-大气连续体系统水盐迁移过程为研究对象,解析了地下水文过程和农田生态系统的关键驱动因素和互馈过程,提出了地下水效益区间的新概念;详述了地下水效益区间的形成机制及其模型模拟方法;从盐渍农田水盐耦合运移机制、尺度效应、量化模型、地下水位调控等方面展望了地下水效益区间研究的科学问题及其挑战。

本文引用格式

赵英 . 盐渍农田“地下水效益区间”的内涵、研究重点及展望[J]. 科技导报, 2023 , 41(20) : 55 -63 . DOI: 10.3981/j.issn.1000-7857.2023.20.006

Abstract

This paper focuses on the processes of water and salt movements in the groundwater-soil-plant-atmosphere continuum (GSPAC) system. First, it analyzes the key driving factors and mutual feedback mechanisms of the groundwater hydrological process and farmland ecosystem and proposes a new conception of groundwater benefit zone (GBZ). Secondly, it elaborates on the formation mechanisms of the groundwater benefit zone and the model development for simulation of the GBZ. Finally, based on the saline farmland water-salt coupling transport mechanism, scale effects, quantitative model of GBZ, and technical parameters of regional groundwater and salt regulation and control, the scientific issues and challenges related to the research framework of GBZ are prospected.

参考文献

[1] FAO, ITSP. Status of the World's Soil Resources (SWSR)-Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils[M]. Italy: Rome, 2015.
[2] 杨劲松, 姚荣江 . 我国盐碱地的治理与农业高效利用[J]. 中国科学院院刊, 2015, 30(Suppl): 162-170.
[3] Liu J, Diamond J. China's environment in a globalizing world[J]. Nature, 2005, 435(7046): 1179-1186.
[4] Metternicht G I, Zinck J A. Remote sensing of soil salinity: Potentials and constraints[J]. Remote Sensing of Environment, 2003, 85(1): 1-20.
[5] Qadir M, Ghafoor A, Murtaza G. Amelioration strategies for saline soils: A review[J]. Land Degradation & Development, 2000, 11(6): 501-521.
[6] Fan X, Pedroli B, Liu G, et al. Soil salinity development in the yellow river delta in relation to groundwater dynamics[J]. Land Degradation & Development, 2012, 23(2): 175-189.
[7] Fan Y, Li H, Miguez-Macho G. Global patterns of groundwater table depth[J]. Science, 2013, 339(6122): 940-943.
[8] Fan Y. Groundwater in the Earth's critical zone: Relevance to large-scale patterns and processes[J]. Water Resources Research, 2015, 51(5): 3052-3069.
[9] Good S, Noone D, Bowen G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes[J]. Science, 2015, 349(6244): 175-177.
[10] Zipper S C, Soylu M E, Booth E G, et al. Untangling the effect of shallow groundwater and soil texture as drivers of subfield-scale yield variability[J]. Water Resources Research, 2015, 51(8): 6338-6358.
[11] White W N. A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: Results of investigations in Escalante Valley, Utah, U.S. Geol. Surv[J]. Water Supply, 1932, 659: 105.
[12] Evaristo J, McDonnell J J. Prevalence and magnitude of groundwater use by vegetation: A global stable isotope meta-analysis[J]. Scientific Reports, 2017, 7(1): 4110.
[13] Zhao Y, Qi J, Hu Q L, et al. Soil science-emerging technologies, global Perspectives and applications. The"Groundwater Benefit Zone", proposals, contributions and new scientific issues[J]. IntechOpen. 2021, doi: 10.5772/intechopen.100299.
[14] Yuan G, Luo Y, Shao M, et al. Evapotranspiration and its main controlling mechanism over the desert riparian forests in the lower Tarim River Basin[J]. Science China Earth Sciences, 2015, 58(6): 1032-1042.
[15] Gao X Y, Huo Z L, Qu Z Y, et al. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area[J]. Scientific Report, 2017, 7(1): 43122.
[16] Xue J Y, Huo Z L, Wang F X, et al. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model[J]. Science of Total Environment, 2018(619/620): 1170-1182.
[17] Zipper S C, Soylu M E, Kucharik C J, et al. Quantifying indirect groundwater ‐mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS(MAGI), a complete critical zone model[J]. Ecological Modelling, 2017, 359: 201-219.
[18] Scanlon B R, Reedy R C, Stonestrom D A, et al. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US[J]. Global Change Biology, 2005, 11(10): 1577-1593.
[19] Yang F, Zhang G X, Yin X R, et al. Study on capillary rise from shallow groundwater and critical water table depth of a saline-sodic soil in western Songnen Plain of China[J]. Environmental Earth Sciences, 2011, 64(8): 2119-2126.
[20] Ayars J E, Christen E W, Soppe R W, et al. The resource potential of in-situ shallow ground water use in irrigated agriculture: A review[J]. Irrigation Science, 2006, 24: 147-160.
[21] Lowry C S, Loheide S P. Groundwater-dependent vegetation: Quantifying the groundwater subsidy[J]. Water Resources Research, 2010, doi: 10.1029/2009WR008874.
[22] Soylu M E, Kucharik C J, Loheide II S P. Influence of groundwater on plant water use and productivity: Development of an integrated ecosystem: Variably saturated soil water flow model[J]. Agricultural and Forest Meteorology, 2014(189/190): 198-210.
[23] Guo L, Lin H. Critical zone research and observatories: Current status and future perspectives[J]. Vadose Zone Journal, 2016, 15(9): 1-14.
[24] Banwart S, Bernasconi S M, Bloem J, et al. Soil processes and functions in critical zone observatories: Hypotheses and experimental design[J]. Vadose Zone Journal, 2011, 10(3): 974-987.
[25] 朱青, 廖凯华, 赖晓明, 等 . 流域多尺度土壤水分监测与模拟研究进展[J]. 地理科学进展,2019, 38(8): 1150-1158.
[26] Shang J, Zhu Q, Zhang W. Advancing soil physics for securing food, water, soil and ecosystem services[J]. Vadose Zone Journal, 2018, 17: 180207.
[28] 顾慰祖, 庞忠和, 王全九, 等 . 同位素水文学[M]. 北京: 科学出版社, 2011.
[29] Lv Y J, Gao l, Geris J, et al. Assessment of water sources and their contributions to streamflow by endmember mixing analysis in a subtropical mixed agricultural catchment[J]. Agricultural Water Management, 2018, 203: 411-422.
[30] Peng X, Zhu Q, Zhang Z, et al. Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers[J]. Soil Biology and Biochemistry, 2017, 109: 81-94.
[31] Penna D, Geris J, Hopp L, et al. Water sources for root water uptake: Using stable isotopes of hydrogen and oxygen as a research tool in agricultural and agroforestry systems[J]. Agriculture, Ecosystems & Environment, 2020, 291: 106790.
[32] Luo X, Liang X, Lin J. Plant transpiration and groundwater dynamics in water-limited climates: Impacts of hydraulic redistribution[J]. Water Resources Research, 2016, 52(6): 4416-4437.
[33] Šimůnek J, van Genuchten M T, Sejna M. Recent developments and applications of the HYDRUS computer software packages[J]. Vadose Zone Journal, 2016, doi: 10.2136/vzj2016.04.0033.
[34] Beven K J. Preferential flows and travel time distributions: defining adequate hypothesis tests for hydrological process models[J]. Hydrological Processes, 2010, 24(12): 1537-1547.
[35] 陈丽娟, 冯起, 王昱, 等 . 微咸水灌溉条件下含黏土夹层土壤的水盐运移规律[J]. 农业工程学报, 2012, 28(8): 44-51.
[36] 姚荣江, 杨劲松, 郑复乐, 等 . 基于表观电导率和 Hydrus 模型同化的土壤盐分估算[J]. 农业工程学报,2019, 35(13): 90–101.
[37] Ding D Y, Feng H, Zhao Y, et al. Impact assessment of climate change and later-maturing cultivars on winter wheat growth and soil water deficit on the Loess Plateau of China[J]. Climatic Change, 2016, 138(1/2): 157-171.
[38] Šimůnek J, Hopmans J W. Modeling compensated root water and nutrient uptake[J]. Ecological Modelling, 2009, 220: 505-521.
[39] 李亮, 史海滨, 贾锦凤, 等 . 内蒙古河套灌区荒地水盐运移规律模拟[J]. 农业工程学报, 2010, 26(1): 31–35.
[40] 张旭洋, 林青, 黄修东, 等. 大沽河流域土壤水-地下水流耦合模拟及补给量估算[J]. 土壤学报, 2019, 56(1): 101-113.
[41] Twarakavi N K C, Šimůnek J, Seo H S. Evaluating interactions between groundwater and vadose zone using HYDRUS-based flow package for MODFLOW[J]. Vadose Zone Journal, 2008, 9(2): 757-768.
[42] Zipper S C, Soylu M E, Kucharik C J, et al. Quantifying indirect groundwater ‐mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS(MAGI), a complete critical zone model[J]. Ecological Modelling, 2017, 359: 201-219.
[43] Sharma P K, Mayank M, Ojha C S P, et al. A review on groundwater contaminant transport and remediation[J]. Journal of Hydraulic Engineering, 2018, doi: 10.1080/09715010.2018.1438213.
[44] 于一雷, 宋献方, 郭嘉, 等 . 黄河三角洲地区地表水化学特征及其主要影响因素[J]. 干旱区资源与环境, 2017, 31(10): 58-63.
[45] 杨劲松, 姚荣江, 王相平, 等 . 河套平原盐碱地生态治理和生态产业发展模式[J]. 生态学报, 2016, 36(22): 7059-7063.
[46] 李显溦, 左强, 石建初, 等 . 新疆膜下滴灌棉田暗管排盐的数值模拟与分析Ⅱ: 模型应用[J]. 水利学报, 2016, 47(5): 616-625.
[47] 李明思, 康绍忠, 杨海梅. 地膜覆盖对滴灌土壤湿润区及棉花耗水与生长的影响[J]. 农业工程学报, 2007, 23(6): 49-54.
[48] Liu Z, Huo Z, Wang C, et al. A field-validated surrogate crop model for predicting root-zone moisture and salt content in regions with shallow groundwater[J]. Hydrology and Earth System Science, 2020, 24: 4213-4237.
[49] Qadir M, Ghafoor A, Murtaza G. Amelioration strategies for saline soils: A review[J]. Land Degradation & Development, 2000, 11(6): 501-521.
[50] Hörtnagl L, Barthel M, Buchmann N, et al. Greenhouse gas fluxes over managed grasslands in Central Europe[J]. Global Change Biology, 2018, 24: 1843-1872.
[51] Soylu M E, Loheide S P, Kucharik C J. Effects of root distribution and root water compensation on simulated water use in maize influenced by shallow groundwater[J]. Vadose Zone Journal, 2017, doi: 10.2136/vzj2017.06.0118.
[52] Beyer M, Koeniger P, Gaj M, et al. A deuterium-based labeling technique for the investigation of rooting depths: Water uptake dynamics and unsaturated zone water transport in semiarid environments[J]. Journal of Hydrology, 2016, 533: 627-643.
[53] Evaristo J, Jasechko S, McDonnell J J. Global separation of plant transpiration from groundwater and streamflow[J]. Nature, 2015, 525: 91-94.
[54] 王全九, 单鱼洋 . 微咸水灌溉与土壤水盐调控研究进展[J]. 农业机械学报, 2015, 46(12): 117-126.
文章导航

/