[1] FAO, ITSP. Status of the World's Soil Resources (SWSR)-Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils[M]. Italy: Rome, 2015.
[2] 杨劲松, 姚荣江 . 我国盐碱地的治理与农业高效利用[J]. 中国科学院院刊, 2015, 30(Suppl): 162-170.
[3] Liu J, Diamond J. China's environment in a globalizing world[J]. Nature, 2005, 435(7046): 1179-1186.
[4] Metternicht G I, Zinck J A. Remote sensing of soil salinity: Potentials and constraints[J]. Remote Sensing of Environment, 2003, 85(1): 1-20.
[5] Qadir M, Ghafoor A, Murtaza G. Amelioration strategies for saline soils: A review[J]. Land Degradation & Development, 2000, 11(6): 501-521.
[6] Fan X, Pedroli B, Liu G, et al. Soil salinity development in the yellow river delta in relation to groundwater dynamics[J]. Land Degradation & Development, 2012, 23(2): 175-189.
[7] Fan Y, Li H, Miguez-Macho G. Global patterns of groundwater table depth[J]. Science, 2013, 339(6122): 940-943.
[8] Fan Y. Groundwater in the Earth's critical zone: Relevance to large-scale patterns and processes[J]. Water Resources Research, 2015, 51(5): 3052-3069.
[9] Good S, Noone D, Bowen G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes[J]. Science, 2015, 349(6244): 175-177.
[10] Zipper S C, Soylu M E, Booth E G, et al. Untangling the effect of shallow groundwater and soil texture as drivers of subfield-scale yield variability[J]. Water Resources Research, 2015, 51(8): 6338-6358.
[11] White W N. A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: Results of investigations in Escalante Valley, Utah, U.S. Geol. Surv[J]. Water Supply, 1932, 659: 105.
[12] Evaristo J, McDonnell J J. Prevalence and magnitude of groundwater use by vegetation: A global stable isotope meta-analysis[J]. Scientific Reports, 2017, 7(1): 4110.
[13] Zhao Y, Qi J, Hu Q L, et al. Soil science-emerging technologies, global Perspectives and applications. The"Groundwater Benefit Zone", proposals, contributions and new scientific issues[J]. IntechOpen. 2021, doi: 10.5772/intechopen.100299.
[14] Yuan G, Luo Y, Shao M, et al. Evapotranspiration and its main controlling mechanism over the desert riparian forests in the lower Tarim River Basin[J]. Science China Earth Sciences, 2015, 58(6): 1032-1042.
[15] Gao X Y, Huo Z L, Qu Z Y, et al. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area[J]. Scientific Report, 2017, 7(1): 43122.
[16] Xue J Y, Huo Z L, Wang F X, et al. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model[J]. Science of Total Environment, 2018(619/620): 1170-1182.
[17] Zipper S C, Soylu M E, Kucharik C J, et al. Quantifying indirect groundwater ‐mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS(MAGI), a complete critical zone model[J]. Ecological Modelling, 2017, 359: 201-219.
[18] Scanlon B R, Reedy R C, Stonestrom D A, et al. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US[J]. Global Change Biology, 2005, 11(10): 1577-1593.
[19] Yang F, Zhang G X, Yin X R, et al. Study on capillary rise from shallow groundwater and critical water table depth of a saline-sodic soil in western Songnen Plain of China[J]. Environmental Earth Sciences, 2011, 64(8): 2119-2126.
[20] Ayars J E, Christen E W, Soppe R W, et al. The resource potential of in-situ shallow ground water use in irrigated agriculture: A review[J]. Irrigation Science, 2006, 24: 147-160.
[21] Lowry C S, Loheide S P. Groundwater-dependent vegetation: Quantifying the groundwater subsidy[J]. Water Resources Research, 2010, doi: 10.1029/2009WR008874.
[22] Soylu M E, Kucharik C J, Loheide II S P. Influence of groundwater on plant water use and productivity: Development of an integrated ecosystem: Variably saturated soil water flow model[J]. Agricultural and Forest Meteorology, 2014(189/190): 198-210.
[23] Guo L, Lin H. Critical zone research and observatories: Current status and future perspectives[J]. Vadose Zone Journal, 2016, 15(9): 1-14.
[24] Banwart S, Bernasconi S M, Bloem J, et al. Soil processes and functions in critical zone observatories: Hypotheses and experimental design[J]. Vadose Zone Journal, 2011, 10(3): 974-987.
[25] 朱青, 廖凯华, 赖晓明, 等 . 流域多尺度土壤水分监测与模拟研究进展[J]. 地理科学进展,2019, 38(8): 1150-1158.
[26] Shang J, Zhu Q, Zhang W. Advancing soil physics for securing food, water, soil and ecosystem services[J]. Vadose Zone Journal, 2018, 17: 180207.
[28] 顾慰祖, 庞忠和, 王全九, 等 . 同位素水文学[M]. 北京: 科学出版社, 2011.
[29] Lv Y J, Gao l, Geris J, et al. Assessment of water sources and their contributions to streamflow by endmember mixing analysis in a subtropical mixed agricultural catchment[J]. Agricultural Water Management, 2018, 203: 411-422.
[30] Peng X, Zhu Q, Zhang Z, et al. Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers[J]. Soil Biology and Biochemistry, 2017, 109: 81-94.
[31] Penna D, Geris J, Hopp L, et al. Water sources for root water uptake: Using stable isotopes of hydrogen and oxygen as a research tool in agricultural and agroforestry systems[J]. Agriculture, Ecosystems & Environment, 2020, 291: 106790.
[32] Luo X, Liang X, Lin J. Plant transpiration and groundwater dynamics in water-limited climates: Impacts of hydraulic redistribution[J]. Water Resources Research, 2016, 52(6): 4416-4437.
[33] Šimůnek J, van Genuchten M T, Sejna M. Recent developments and applications of the HYDRUS computer software packages[J]. Vadose Zone Journal, 2016, doi: 10.2136/vzj2016.04.0033.
[34] Beven K J. Preferential flows and travel time distributions: defining adequate hypothesis tests for hydrological process models[J]. Hydrological Processes, 2010, 24(12): 1537-1547.
[35] 陈丽娟, 冯起, 王昱, 等 . 微咸水灌溉条件下含黏土夹层土壤的水盐运移规律[J]. 农业工程学报, 2012, 28(8): 44-51.
[36] 姚荣江, 杨劲松, 郑复乐, 等 . 基于表观电导率和 Hydrus 模型同化的土壤盐分估算[J]. 农业工程学报,2019, 35(13): 90–101.
[37] Ding D Y, Feng H, Zhao Y, et al. Impact assessment of climate change and later-maturing cultivars on winter wheat growth and soil water deficit on the Loess Plateau of China[J]. Climatic Change, 2016, 138(1/2): 157-171.
[38] Šimůnek J, Hopmans J W. Modeling compensated root water and nutrient uptake[J]. Ecological Modelling, 2009, 220: 505-521.
[39] 李亮, 史海滨, 贾锦凤, 等 . 内蒙古河套灌区荒地水盐运移规律模拟[J]. 农业工程学报, 2010, 26(1): 31–35.
[40] 张旭洋, 林青, 黄修东, 等. 大沽河流域土壤水-地下水流耦合模拟及补给量估算[J]. 土壤学报, 2019, 56(1): 101-113.
[41] Twarakavi N K C, Šimůnek J, Seo H S. Evaluating interactions between groundwater and vadose zone using HYDRUS-based flow package for MODFLOW[J]. Vadose Zone Journal, 2008, 9(2): 757-768.
[42] Zipper S C, Soylu M E, Kucharik C J, et al. Quantifying indirect groundwater ‐mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS(MAGI), a complete critical zone model[J]. Ecological Modelling, 2017, 359: 201-219.
[43] Sharma P K, Mayank M, Ojha C S P, et al. A review on groundwater contaminant transport and remediation[J]. Journal of Hydraulic Engineering, 2018, doi: 10.1080/09715010.2018.1438213.
[44] 于一雷, 宋献方, 郭嘉, 等 . 黄河三角洲地区地表水化学特征及其主要影响因素[J]. 干旱区资源与环境, 2017, 31(10): 58-63.
[45] 杨劲松, 姚荣江, 王相平, 等 . 河套平原盐碱地生态治理和生态产业发展模式[J]. 生态学报, 2016, 36(22): 7059-7063.
[46] 李显溦, 左强, 石建初, 等 . 新疆膜下滴灌棉田暗管排盐的数值模拟与分析Ⅱ: 模型应用[J]. 水利学报, 2016, 47(5): 616-625.
[47] 李明思, 康绍忠, 杨海梅. 地膜覆盖对滴灌土壤湿润区及棉花耗水与生长的影响[J]. 农业工程学报, 2007, 23(6): 49-54.
[48] Liu Z, Huo Z, Wang C, et al. A field-validated surrogate crop model for predicting root-zone moisture and salt content in regions with shallow groundwater[J]. Hydrology and Earth System Science, 2020, 24: 4213-4237.
[49] Qadir M, Ghafoor A, Murtaza G. Amelioration strategies for saline soils: A review[J]. Land Degradation & Development, 2000, 11(6): 501-521.
[50] Hörtnagl L, Barthel M, Buchmann N, et al. Greenhouse gas fluxes over managed grasslands in Central Europe[J]. Global Change Biology, 2018, 24: 1843-1872.
[51] Soylu M E, Loheide S P, Kucharik C J. Effects of root distribution and root water compensation on simulated water use in maize influenced by shallow groundwater[J]. Vadose Zone Journal, 2017, doi: 10.2136/vzj2017.06.0118.
[52] Beyer M, Koeniger P, Gaj M, et al. A deuterium-based labeling technique for the investigation of rooting depths: Water uptake dynamics and unsaturated zone water transport in semiarid environments[J]. Journal of Hydrology, 2016, 533: 627-643.
[53] Evaristo J, Jasechko S, McDonnell J J. Global separation of plant transpiration from groundwater and streamflow[J]. Nature, 2015, 525: 91-94.
[54] 王全九, 单鱼洋 . 微咸水灌溉与土壤水盐调控研究进展[J]. 农业机械学报, 2015, 46(12): 117-126.