专稿

高空飞行密闭服的结构和关键技术分析

  • 周毕云 ,
  • 丁立 ,
  • 张静 ,
  • 李潭秋 ,
  • 席林斌
展开
  • 1. 北京航空航天大学生物与医学工程学院,生物力学与力生物学教育部重点实验室,生物医学工程高精尖创新中心,北京 100191
    2. 中国航天员科研训练中心,北京 100094
周毕云,博士研究生,研究方向为航空航天医学及人因工程、飞行员个体防护装备,电子信箱:biyunzhou1002@163.com

收稿日期: 2022-05-11

  修回日期: 2022-07-26

  网络出版日期: 2023-11-21

基金资助

军委科技委后勤部科研项目(BZZ18J004)

Analysis of the structure and key technology of high-altitude full pressure suit

  • ZHOU Biyun ,
  • DING Li ,
  • ZHANG Jing ,
  • LI Tanqiu ,
  • XI Linbin
Expand
  • 1. Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
    2. China Astronaut Research and Training Center, Beijing 100094, China

Received date: 2022-05-11

  Revised date: 2022-07-26

  Online published: 2023-11-21

摘要

在亚轨道飞行任务中,存在低压、高温、辐射、缺氧等复杂的飞行环境。高空飞行密闭服是实现压力防护、温度防护、工效和生命保障的重要载体,是飞行员高空防护的核心部分。回顾了高空飞行密闭服早期技术验证,论述了高空飞行密闭服的发展演变特征,总结了密闭服的结构实现形式,分析了高空飞行密闭服在设计过程中的低压防护、热防护、操作工效关键技术问题。展望了密闭服的发展,认为未来应进一步在生产工艺、先进材料、新型服装结构等方面进行研究,设计出标准化、轻量化、操作灵活、舒适的高空飞行密闭服。

本文引用格式

周毕云 , 丁立 , 张静 , 李潭秋 , 席林斌 . 高空飞行密闭服的结构和关键技术分析[J]. 科技导报, 2023 , 41(21) : 6 -13 . DOI: 10.3981/j.issn.1000-7857.2023.21.001

Abstract

This paper retrospects the high-altitude full pressure suit in early technical validation, describes the development and evolution characteristics of the high-altitude flight full pressure suit, and summarizes the structure realization forms. Besides, the critical technical problems, i.e., low-pressure protection, thermal protection and operational ergonomics in the design process of the high-altitude full-pressure suit, are analyzed. Finally, the development of full pressure suit is prospected. It is considered that the manufacturing technique, advanced materials and new suits structure should be further studied in the future, and a standardized, lightweight, flexible and comfortable high-altitude full pressure suit should be designed.

参考文献

[1] 唐克, 冯宝龙, 谢保军, 等. 临近空间飞行器开发利用现状与发展趋势[J]. 飞航导弹, 2012(11): 44-48.
[2] 陈鹏, 宋愿赟, 李文静, 等. 临近空间高速侦察与监视载荷技术研究综述[J]. 战术导弹技术, 2021(1): 7-12.
[3] 王卫杰, 司文涛, 王伟超, 等. 美军高超声速武器技术发展及影响[J].中国航天, 2020(4): 54-59.
[4] 孟令扬 . SR-72 无人机的研制进展[J]. 航空发动机, 2013, 39(6): 12.
[5] 王鹏飞, 王光明, 蒋坤, 等. 临近空间高超声速飞行器发展及关键技术研究[J]. 飞航导弹, 2019(8): 22-28.
[6] 牛轶峰, 沈林成, 李杰, 等 . 无人-有人机协同控制关键问题[J]. 中国科学: 信息科学, 2019, 49(5): 538-554.
[7] 陈杰, 辛斌 . 有人/无人系统自主协同的关键科学问题[J]. 中国科学: 信息科学, 2018, 48(9): 1270-1274.
[8] Otto R P. Small unmanned aircraft systems (SUAS) flight plan: 2016-2036. Bridging the gap between tactical and strategic[R]. Washington: Federal Aviation Administration, 2016.
[9] Kandjov I M. Heat and mass exchange processes between the surface of the human body and ambient air at various altitudes[J]. International Journal of Biometeorology, 1999, 43(1): 38-44.
[10] Widiawan A K, Tafazolli R. High altitude platform station (HAPS): A review of new infrastructure development for future wireless communications[J]. Wireless Personal Communications, 2007, 42(3): 387-404.
[11] 高明泉. 飞行与体液沸腾[J]. 航空知识, 1997(11): 24.
[12] 刘畅, 许相玺 . 临近空间飞行器——改变未来战场规则的新型武器[J]. 军事文摘, 2020(17): 46-49.
[13] 王宇虹. 中国成功发射可重复使用试验航天器[J]. 导弹与航天运载技术, 2020(5): 98.
[14] 瑾媛 . 过于先进的可重复使用运载器[J]. 航空知识, 2021(9): 1.
[15] Mohler S R. Wiley Post, his Winnie Mae, and the world's first pressure suit[J]. Smithsonian Annals of Flight, 1971, 8(1): 1-127.
[16] Boyne W J. Beyond the horizons the lockheed story[M]. New York:Thomas Dunne Books, 1998.
[17] Chang C M, Sauser B W, Bue G C, et al. Space shuttle launch entry suit thermal performance evaluation[J]. SAE Transactions, 1993, 102: 1646-1659.
[18] Watson R D. Modified advanced crew escape suit intravehicular activity suit for extravehicular activity mobility evaluations[C]//Proceedings of the 44th International Conference on Environmental Systems. New Mexico: David Clark Company, Incorporated, 2014.
[19] Patlach R, Stepaniak P C, Lane H W. Loss of Signal: Aeromedical lessons learned from the STS-107 Columbia space shuttle mishap[C]//Proceedings of the Aerospace Medical Association Meeting. Washington: NASA Technical Reports Server (NTRS) Collection, 2014.
[20] 刘长明 . 神奇的“微小加压舱”[J]. 航空知识, 2008(8): 26-27.
[21] Jenkins D R. Dressing for altitude: U. S. aviation pressure suits—Wiley post to space shuttle[M]. Washington, DC: the National Aeronautics and Space Administration, 2012.
[22] Schafer L E, Rajulu S L, Klute G K. A comparison of two shuttle launch and entry suits: Reach envelope, isokinetic strength, and treadmill tests[R]. Washington: NASA Technical Reports Server, 1992.
[23] 姚娟, 刘长明 . 高空飞行密闭服装——飞行员和宇航员个体防护装备系列介绍[J]. 中国个体防护装备, 2010(5): 52-55.
[24] Boyle R. New experiments physico-mechanical, touching the spring of the air, and its effects (Made, for the most part, in a new pneumatical engine) [M]. Oxford: Miles Flesher, 1973.
[25] Gell C F, Hays E L, Correale J V. Developmental history of the aviator's full pressure suit in the U.S. Navy[J]. Journal of Aviation Medicine, 1959, 30(4): 241.
[26] Coburn K R, Kellett G L, Turaids T. Full pressure suits and personal hygiene[R]. Washington: NASA Technical Reports Server, 1967.
[27] 魏毅寅, 张冬青, 叶蕾, 等 . 美国 X-51A 飞行器完成首次动力飞行试验[J].飞航导弹, 2010(6): 2-7.
[28] Jenkins D R, Landis T. Lockheed Sr-71/Yf-12 blackbirds[M]. New York: Voyageur Press, 1997.
[29] Lambert M S. Advanced crew escape suit[J]. Aerospace Engineering, 1995, 15(9): 11.
[30] Raven P B, Dodson A, Davis T O. Stresses involved in wearing PVC supplied-air suits: A review[J]. American Industrial Hygiene Association Journal, 2010, 40(7): 592-599.
[31] 肖志军, 管春磊, 李潭秋 . 俄美航天服回顾与展望[J]. 航天医学与医学工程, 2011, 24(6): 460-466.
[32] 张万欣, 李潭秋, 尚坤, 等 . 航天服压力防护技术发展与构想[J]. 航天医学与医学工程, 2018, 31(2): 121-130.
[33] Jacobs S, Tufts D, Gohmert D. Space suit development for orion[C]//48th International Conference on Environmental Systems. New Mexico: David Clark Company, Incorporated, 2018.
[34] Jacobs S, Tufts D, Green D, et al. Development of a custom space suit for orion[C]//49th International Conference on Environmental Systems. New Mexico: David Clark Company, Incorporated, 2019.
[35] 吴之明, 黄绍华 . 蓝天骄子的“保护神”——我国第一代飞行员高空密闭头盔开发纪实[J]. 航空史研究, 2000(2): 26-28.
[36] Kobrick R L, Carr C E, Meyen F, et al. Using inertial measurement units for measuring spacesuit mobility and work envelope capability for intravehicular and extravehicular activitie[C]//Proceedings of the International Astronautical Congress. Paris: International Astronautical Federation, 2012.
[37] Macleod S, Ripps T, Garcia J, et al. The demonstrator suit: Evaluating a full pressure suit through manned and unmanned testing[C]//Proceedings of the 41st International Conference on Environmental Systems. New Mexico: David Clark Company, Incorporated, 2011.
[38] Tufts D, Jacobs S, Barry D. The demonstrator suit: Incorporating waist, hip and shoulder mobility in a full pressure suit[C]//Proceedings of the 40th International Conference on Environmental Systems. New Mexico: David Clark Company, Incorporated, 2010.
[39] Wang H Y, Hu S T, Liu G D, et al. Experimental study of human thermal sensation under hypobaric conditions in winter clothes[J]. Energy Build, 2010, 42(11): 2044-2048.
[40] Nyberg K L, Diller K R, Wissler E H. Model of human/ liquid cooling garment interaction for space suit automatic thermal control[J]. Journal of Biomechanical Engineering, 2001, 123(1): 114-120.
[41] Sullivan P J E, Mekjavic I B, Kakitsuba N. Ventilation index of helicopter pilot suits[J]. Ergonomics, 1987, 30: 1053-1061.
[42] Xu G. Removal of CO2, moisture and heat from ventilated suit under different pressures[J]. Space Medicine & Medical Engineering, 1996, 9(4): 251-255.
[43] Kobrick R L, Carr C E, Meyen F, et al. Using inertial measurement units for measuring spacesuit mobility and work envelope capability for intra vehicular and extravehicular activities[C]//Proceedings of the International Astronautical Congress. Paris: International Astronautical Federation, 2012.
[44] Main J A, Peterson S W, Strauss A M. Design and structural analysis of highly mobile space suits and gloves[J]. Journal of Spacecraft Rockets, 1994, 31(6): 1115-1122.
[45] Atherton D C J L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism Magnetic Materials, 1986, 62(1/2): 48-60.
[46] Huerta R, Kerr E S, Anderson A P. Mechanical counterpressure and gas-pressurized fusion spacesuit concept to enable martian planetary exploration[C]//Proceedings of the International Conference on Environmental Systems. New Mexico: David Clark Company, Incorporated, 2018.
[47] Holschuh B, Obropta E, Buechley L, et al. Materials and textile architecture analyses for mechanical counter-pressure space suits using active materials[C]//Proceedings of the AIAA Space 2012 Conference & Exposition. Reston VA: American Institute of Aeronautics and Astronautics.Sep, 2012.
文章导航

/