[1] Xu C D, Wang J F, Li Q X, et al. A new method for temperature spatial interpolation based on sparse historical stations[J]. Journal of Climate, 2018, 31(5): 1757-1770.
[2] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407.
[3] Li R, Arkin P, Smith T M, et al. Global precipitation trends in 1900—2005 from a reconstruction and coupled model simulations[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(4): 1679-1689.
[4] Saha S, Chakraborty D, Paul R K, et al. Disparity in rainfall trend and patterns among different regions: Analysis of 158 years' time series of rainfall dataset across India[J]. Theoretical and Applied Climatology, 2018, 134(1/2): 381-395.
[5] Wang J F, Xu C D, Hu M G, et al. Global land surface air temperature dynamics since 1880[J]. International Journal of Climatology, 2018, 38(S1): e466-e474.
[6] Gehne M, Hamill T M, Kiladis G N, et al. Comparison of global precipitation estimates across a range of temporal and spatial scales[J]. Journal of Climate, 2016, 29(21): 7773-7795.
[7] Kamizawa N, Takahashi H G. Projected trends in interannual variation in summer seasonal precipitation and its extremes over the tropical Asian monsoon regions in CMIP5[J]. Journal of Climate, 2018, 31(20): 8421-8439.
[8] Shu F, Mao K F, Xia X Q, et al. Dataset of daily near-surface air temperature in China from 1979 to 2018[J]. Earth System Science Data, 2022, 14(3): 1413-1432.
[9] Liang P, Yan Z W, Li Z. Climatic warming in Shanghai during 1873—2019 based on homogenised temperature records[J]. Advances in Climate Change Research, 2022, 13(4): 496-507.
[10] 战云健, 陈东辉, 廖捷, 等 . 中国 60 城市站 1901-2019年日降水数据集的构建[J]. 气候变化研究进展, 2022, 18(6): 670-682.
[11] Brohan P, Kennedy J J, Harris I, et al. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850[J]. Journal of Geophysical Research, 2006, 111: D12106.
[12] 李庆祥, 董文杰, 李伟, 等 . 近百年中国气温变化中的不确定性估计[J]. 科学通报, 2010, 55(16): 1544-1554.
[13] Thomas S, Qin Dahe, Gian-Kasper P, et al. Climate Change 2013: The physical science basis, Technical Summary[R]. IPCC WGI Fifth Assessment Report, Cambridge: Cambridge University Press, 2013.
[14] Sun X B, Ren G Y, Xu W H, et al. Global land-surface air temperature change based on the new CMA GLSAT dataset[J]. Science Bulletin, 2017, 62(4): 236-238.
[15] Aguilar E, Auer I, Brunet M, et al. Guidance on metadata and homogenization[A]. WMO-TD No. 1186, WCDMP No. 53. Geneva, Switzerland: World Meteorological Organization, 2003, 55.
[16] Alexandersson H. A homogeneity test applied to precipitation data[J]. Journal of Climate, 1986, 6(6): 661-675.
[17] Yan Z W, Yang C, Jones P. Influence of inhomogeneity on the estimation of mean and extreme temperature trends in Beijing and Shanghai[J]. Advances in Atmospheric Sciences, 2001, 18(3): 309-322.
[18] Alexander L V, Zhang X B, Peterson T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research, 2006, 111: D05109.
[19] Yan Z W, Jones P. Detecting inhomogeneity in daily climate series using wavelet analysis[J]. Advances in Atmospheric Sciences, 2008, 25(2): 157-163.
[20] Li Q X,Zhang H Z, Chen J, et al. A mainland China Homogenized historical temperature dataset of 1951-2004[J]. Bulletin of the American Meteorological Society, 2009, 90(8): 1062-1065.
[21] 严中伟, 王君, 李珍, 等 . 基于均一化观测序列评估城市化的气候效应[J]. 气象科技进展, 2014, 4(3): 41-48.
[22] 严中伟, 李珍, 夏江江. 气候序列的均一化——定量评估气候变化的基础[J]. 中国科学: 地球科学, 2014, 44(10): 2101-2111.
[23] Li Q X, Zhang L,Xu W H,et al. Comparisons of time series of annual mean surface air temperature for China since the 1900s Observation, model simulation and extended reanalysis[J]. Bulletin of the American Meteorological Society, 2017, 98(4): 699-711.
[24] Dumitrescu A, Cheval S, Guijarro J A. Homogenization of a combined hourly air temperature dataset over Romania[J]. International Journal of Climatology, 2020, 40(5): 2599-2608.
[25] King J C, Turner J, Colwell S, et al. Inhomogeneity of the surface air temperature record from Halley, Antarctica[J]. Journal of Climate, 2021, 34(12): 4771-4783.
[26] Kessabi R, Mohamed H, Guijarro J A, et al. Homogenization and trends analysis of monthly precipitation series in the Fez-Meknes Region, Morocco[J]. Climate, 2022, 10(64): 2-17.
[27] Peterson T C, Vose R S. An overview of the global historical climatology network temperature database[J]. Bulletin of the American Meteorological Society, 1997, 78(12): 2837-2850.
[28] Peterson T C, Easterling D, Karl T R, et al. Homogeneity adjustments of in situ atmospheric climate data: A review[J]. International Journal of Climatology, 1998, 18(13): 1493-1517.
[29] Peterson T C, Karl T R, Jamason P F, et al. First difference method: Maximizing station density for the calculation of long-term global temperature change[J]. Journal of Geophysical Research Atmospheres, 1998, 103(D20): 25967-25974.
[30] Peterson T C, Vose R S, Schmoyer R, et al. Global historical climatology network (GHCN) quality control of monthly temperature data[J]. International Journal of Climatology, 1998, 18(11): 1169-1179.
[31] Lawrimore J H,Menne M J,Gleason B E,et al. An overview of the global historical climatology network monthly mean temperature dataset,Version 3[J]. Journal of Geophysical Research Atmospheres,2011, 116: D19121.
[32] Menne M J, Williams C N, Gleason B E. The global historical climatology network monthly temperature dataset,Version 4[J]. Journal of Climate, 2018, 31(24): 9835-9854.
[33] Jones P D. Hemispheric surface air temperature variations: A reanalysis and an update to 1993[J]. Journal of Climate, 1994, 7(11): 1794-1802.
[34] Jones P D, New M, Parker D, et al. Surface air temperature and its variations over the last 150 years[J]. Reviews of Geophysics, 1999, 37(2): 173-199.
[35] Jones P D, Moberg A. Hemispheric and large scale surface air temperature variations: An extensive revision and an update to 2001[J]. Journal of Climate, 2003, 16(2): 206-223.
[36] Mitchell T D, Jones P D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids[J]. International Journal of Climatology, 2005, 25(6): 693-712
[37] Jones P D, Lister D H, Osborn T J, et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010[J]. Journal of Geophysical Research, 2012, 117(D5): D05127.
[38] Hansen J, Lebedeff S. Global trends of measured surface air temperature[J]. Journal of Geophysical Research, 1987, 92(D11): 13345-13372.
[39] Hansen J, Ruedy R, Glascoe J, et al. GISS analysis of surface temperature change[J]. Journal of Geophysical Research, 1999, 104(D24): 30997-31022.
[40] Hansen J, Ruedy R, Sato M, et al. A closer look at United States and global surface temperature change[J]. Journal of Geophysical Research, 2001, 106(D20): 23947-23963.
[41] Hansen J, Ruedy R, Sato M, et al. Global surface temperature change[J]. Reviews of Geophysics, 2010, 48(4): 1-29.
[42] IPCC. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovern-mental panel on climate change[R]. Cambridge: Cambridge University Press, 2013.
[43] IPCC. Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovern-mental panel on climate change[R]. Cambridge: Cambridge University Press. 2021.
[44] Rohde R A, Hausfather Z. The Berkeley earth land/ ocean temperature record[J]. Earth System Science Data,2020, 12(4): 3469-3479.
[45] Smith T M, Arkin P A, Ren Li, et al. Improved reconstruction of global precipitation since 1900[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(10): 1505-1517.
[46] Ren Li, Arkin P A, Smith T M, et al. Global precipitation trends in 1900-2005 from a reconstruction and coupled model simulations[J]. Journal of Geophysical Research, 2013, 118(4): 1679-1689.
[47] 闻新宇, 王绍武, 朱锦红, 等 . 英国 CRU 高分辨率格点资料揭示的 20世纪中国气候变化[J]. 大气科学, 2006, 30(5): 894-904.
[48] 马柱国, 邵丽娟.中国北方近百年干湿变化与太平洋年代际振荡的关系[J]. 大气科学, 2006, 30(3): 464-474.
[49] Cao L J, Zhao P, Yan Z W, et al. Instrumental temperature series in eastern and central China back to the nineteenth century[J]. Journal of Geophysical Research, 2013, 118: 8197-8207.
[50] Cao L J, Yan Z W, Zhao P, et al. Climatic warming in China during 1901-2015 based on an extended dataset of instrumental temperature records[J]. Environmental Research Letters, 2017, 12: 064005.
[51] Xu W H, Li Q X, Yang S, et al. Overview of global monthly surface temperature data in the past century and preliminary integration[J]. Advances in Climate Change Research, 2014, 3(5): 111-117.
[52] 杨溯, 徐文慧, 许艳, 等 . 全球地面降水月值历史数据集研制[J]. 气象学报, 2016, 74(2): 259-270.
[53] Xu W H, Li Q X, Jones P, et al. A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900[J]. Climate Dynamics, 2018, 50(15): 2513-2536.
[54] Yun X, Huang B Y, Cheng J Y, et al. A new merge of global surface temperature datasets since the start of the 20th century[J]. Earth System Science Data, 2019, 11(4): 1629-1643.
[55] Huang B, Thorne P W, Banzon V F, et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons[J]. Journal of Climate, 2017, 30(20): 8179-8205.
[56] Huang B, Angel W, Boyer T, et al. Evaluating SST analyses with independent ocean profile observations[J]. Journal of Climate, 2018, 31(13): 5015-5030.
[57] Li Q X, Sun W B, Huang B Y, et al. Consistency of global warming trends strengthened since 1880s[J]. Science Bulletin, 2020, 65(20): 1709-1712.
[58] Li Q X, Sun W B, Yun X, et al. An updated evaluation of the global mean land surface air temperature and surface temperature trends basedon CLSAT and CMST[J]. Climate Dynamics, 2021, 56(1): 635-650.
[59] Sun W B, Li Q X, Huang B Y, et al. The assessment of global surface temperature change from 1850s: The C-LSAT2.0 ensemble and the CMST-Interim datasets[J]. Advances in Atmospheric Sciences, 2021, 38(5): 875-888.
[60] Li Q X, Dong W J, Jones P. Continental scale surface air temperature variations: Experience derived from the Chinese region[J]. Earth Science Reviews, 2020, 200: 102998.
[61] Vincent L A, Zhang X, Bonsal B R, et al. Homogenization of daily temperatures over Canada[J]. Journal of Climate, 2002, 15(11): 1322-1334.
[62] Della-Marta P M, Wanner H. A method of homogenizing the extremes and mean of daily temperature measurements[J]. Journal of Climate, 2006, 19(17): 4179-4197.
[63] Vincent L A, Wang X L, Milewska E J, et al. A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis[J]. Journal of Geophysical Research-Atmospheres, 2012, 117(D18): D18110.
[64] Trewin B. A daily homogenized temperature dataset for Australia[J]. International Journal of Climatology, 2013, 33: 1510-1529.
[65] Hewaarachchi A P, Li Y G, Lund R, et al. Homogenization of daily temperature data[J]. Journal of Climate, 2017, 30(3): 985-999.
[66] Yan Z W, Ding Y H, Zhai Panmao, et al. Re-assessing climatic warming in China since 1900[J]. Journal of Meteorological Research, 2020, 34(2): 243-251.
[67] Bonsal B R, Zhang X, Vincent L A, et al. Characteristics of daily and extreme temperatures over Canada[J]. Journal of Climate, 2001, 14(9): 1959-1976.
[68] Si P, Zheng Z F, Ren Y, et al. Effects of urbanization on daily temperature extremes in North China[J]. Journal of Geographical Sciences, 2014, 24(2): 349-362.
[69] Zhang W X, Zhou T J, Zou L W, et al. Reduced exposure to extreme precipitation from 0.5℃ less warming in global land monsoon regions[J]. Nature Communications, 2018, 9(1): 3153.
[70] Nayak S, Dairaku K, Takayabu I, et al. Extreme precipitation linked to temperature over Japan: Current evaluation and projected changes with multi-model ensemble downscaling[J]. Climate Dynamics, 2018, 51(11): 4385-4401.
[71] Li L C, Yao N, Li Y, et al. Future projections of extreme temperature events in different sub-regions of China[J]. Atmospheric Research, 2019, 217: 150-164.
[72] Yu L J,Zhong S Y, Qiu Y B, et al. Trend in short-duration extreme precipitation in Hong Kong[J]. Frontiers in Environmental Science, 2020, 8: 581536.
[73] Menne M J, Durre I, Vose R S, et al. An overview of the global historical climatology network-daily database[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(7): 897-910.
[74] Rohde R, Muller R A, Jacobsen R, et al. A new estimate of the average earth surface land temperature spanning 1753 to 2011[J]. Geoinformatics & Geostatistics, 2013, 1: 1.
[75] Rohde R, Muller R, Jacobsen R, et al. Berkeley earth temperature averaging process[J]. Geoinformatics & Geostatistics, 2013, 1: 2.
[76] Rohde R, Lead S, Berkeley earth surface temperature. Comparison of Berkeley earth, NASA GISS, and Hadley CRU averaging techniques on ideal synthetic data[R]. 2013.
[77] Png I P L, Chen Y, Chu J H, et al. Temperature, precipitation and sunshine across China, 1912-1951: A new daily instrumental dataset[J]. Geoscience Data Journal, 2020, 7(2): 90-101.
[78] Li Y, Tinz B, von Storch H, et al. Construction of a surface air temperature series for Qingdao in China for the period 1899 to 2014[J]. Earth System Science Data, 2018, 10(1): 643-652.
[79] Yan Z W, Yang C, Jones P. Influence of inhomogeneity on the estimation of mean and extreme temperature trends in Beijing and Shanghai[J]. Advances in Atmospheric Sciences, 2001, 18(3): 309-322.
[80] 唐国利,任国玉. 近百年中国地表气温变化趋势的再分析[J]. 气候与环境研究, 2005, 10(4): 791-798.
[81] 司鹏, 郝立生, 罗传军, 等 . 河北保定气象站长序列气温资料缺测记录插补和非均一性订正[J]. 气候变化研究进展, 2017, 13(1): 41-51.
[82] 司鹏, 郝立生, 罗传军, 等 . 华北平原保定气象站百年降水序列的建立[J]. 气候变化研究快报, 2017, 6(3): 177-185.
[83] Wang X L, Wen Q H, Wu Y H. Penalized maximal ttest for detecting undocumented mean change in climate data series[J]. Journal of Applied Meteorology and Climatology, 2007, 46(6): 916-931.
[84] Wang X L. Penalized maximal F test for detecting undocumented meanshift without trend change[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(3): 368-384.
[85] Wang X L, Chen H F, Wu Y H, et al. New techniques for the detection and adjustment of shifts in daily precipitation data series[J]. Journal of Applied Meteorology and Climatology, 2010, 49(12): 2416-2436.
[86] Si P, Li Q X, Jones P. Construction of homogenized daily surface air temperature for the city of Tianjin during 1887-2019[J]. Earth System Science Data, 2021, 13(5): 2211-2226.
[87] 司鹏, 郭军, 赵煜飞, 等 . 北京 1841年以来均一化最高和最低气温日值序列的构建[J].气象学报, 2022, 80(1): 136-152.
[88] 司鹏, 郝立生, 傅宁, 等 . 河北保定百年均一化逐日气温序列的建立及其气候变化特征[J]. 大气科学学报, 2023, 46(2): 297-309.
[89] Easterling D R, eterson T C. The effect of artificial discontinuities on recent trends in minimum and maximum temperatures[J]. Atmospheric Research,1995, 37(1-3): 19-26.
[90] Easterling D R,Peterson T C. A new method for detecting undocumented discontinuities in climatological time series[J]. International Journal of Climatology,1995, 15(4): 369-377.
[91] Quayle R, Easterling D, Karl T, et al. Effects of recent thermometer changes in the cooperative station network[J]. Bulletin of the American Meteorological Society, 1991, 72(11): 1718-1723.
[92] 唐国利, 丁一汇, 王绍武, 等 . 近百年温度曲线的对比分析[J]. 气候变化研究进展, 2009, 5(2): 71-78.
[93] Caussinus H,Mestre O. Detection and correction of artificial shifts in climate series[J]. Journal of the Royal Statistical Society,2004, 53(3): 405-425.
[94] Jones P D, Lister D H, Li Q X. Urbanization effects in large-scale temperature records, with an emphasis on China[J]. Journal of Geophysical Research, 2008, 113(D16): D16122.
[95] Menne M J, Williams Jr C N. Homogenization of temperature series via pairwise comparisons[J]. Journal of Climate, 2009, 22(7): 1700-1717.
[96] Chenoweth M. A possible discontinuity in the U.S. historical temperature record[J]. Journal of Climate, 1992, 5(10): 1172-1179.
[97] Della-Marta P, Wanner H. A method of homogenizing the extremes and mean of daily temperature measurements[J]. Journal of Climate, 2006, 19(17): 4179-4197.
[98] Haimberger L, Tavolato C, Sperka S. Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations[J]. Journal of Climate, 2012, 25(23): 8108-8131.
[99] Rahimzadeh F, Zavareh M N. Effects of adjustment for non-climatic discontinuities on determination of temperature trends and variability over Iran[J]. International Journal of Climatology, 2014, 34(6): 2079-2096.
[100] Winkler J A, Skaggs R H, Baker D G. Effect of temperature adjustments on the Minneapolis-St. Paul urban heat island[J]. Journal of Applied Meteorology, 1981, 20(11): 1295-1300.
[101] Alexandersson H. A homogeneity test applied to precipitation data[J]. Journal of Climatology, 1986, 6(6): 661-675.
[102] 翟盘茂.中国历史探空资料中的一些过失误差及偏差问题[J]. 气象学报, 1997, 55(5): 563-572.
[103] 刘小宁. 我国40 年年平均风速的均一性检验[J]. 应用气象学报, 2000, 11(1): 27-34.
[104] Li Q X, Liu X N, Zhang H Z, et al. Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data [J]. Advances in Atmospheric Sciences, 2004, 21(2): 260-268.
[105] 鞠晓慧, 屠其璞, 李庆祥 . 我国太阳总辐射月总量资料的均一性检验及订正[J]. 南京气象学院学报, 2006, 29(3): 336-341.
[106] 吴必文, 温华洋, 惠军. 基于Γ分布的气压序列非均一性检验方法初探[J]. 应用气象学报, 2008, 19(4): 496-501.
[107] 郭艳君, 丁一汇. 近50年我国探空温度序列均一化及变化趋势[J]. 应用气象学报, 2008, 19(6): 646-654.
[108] 曹丽娟, 鞠晓慧, 刘小宁. PMFT 方法对我国年平均风速的均一性检验[J]. 气象, 2010, 36(10): 52-56.
[109] 王秋香, 李庆祥, 周浩楠, 等 .中国降水序列均一性研究及对比分析[J]. 气象, 2012, 38(11): 1390-1398.
[110] 李庆祥, 彭嘉栋, 沈艳 . 1900-2009 年中国均一化逐月降水数据集研制[J]. 地理学报, 2012, 67(3): 301-311.
[111] Li Z, Yan Z W, Cao L J, et al. Adjusting inhomogeneous daily temperature variability using wavelet analysis[J]. International Journal of Climatology,2014, 34(4): 1196-1207.
[112] Li Z, Yan Z W, Wu H. Updated homogenized Chinese temperature series with physical consistency[J]. Atmospheric and Oceanic Science Letters, 2015, 8(1): 17-22.
[113] 朱亚妮, 曹丽娟, 唐国利, 等 .中国地面相对湿度非均一性检验及订正[J]. 气候变化研究进展, 2015, 11(6): 379-386.
[114] 远芳, 曹丽娟, 唐国利, 等.中国825个基准、基本站地面气压系统误差的检验与订正[J]. 气候变化研究进展,2015, 11(5): 331-336.
[115] Li Z, Yan Z W, Cao L J, et al. Further-adjusted long-term temperature series in China based on MASH[J]. Advances in Atmospheric Sciences, 2018, 35(8): 909-917.
[116] Li Q X, Zhang H Z, Liu X N, et al. A mainland China homogenized historical temperature dataset of 1951-2004[J]. Bulletin of the American Meteorological Society, 2009, 90(8): 1062-1065.
[117] Xu W H, Li Q X, Wang X L, et al. Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices[J]. Journal of Geophysical Research, 2013, 118(17): 9708-9720.
[118] 杨溯, 李庆祥 .中国降水量序列均一性分析方法及数据集更新完善[J]. 气候变化研究进展, 2014, 10(4): 276-281.
[119] Hu Z Y, Li Q X, Chen X, et al. Climate changes in temperature and precipitation extremes in an alpine grassland of Central Asia[J]. Theoretical and Applied Climatology, 2016, 126: 519-531.
[120] 司鹏, 徐文慧 . 利用 RHtestsV4 软件包对天津 1951~2012 年逐日气温序列的均一性分析[J]. 气候与环境研究, 2015, 20(6): 663-674.
[121] 司鹏, 王冀, 李慧君, 等. 省级地面气象观测资料均一化处理技术与应用[M]. 北京: 气象出版社, 2020.
[122] 司鹏, 解以扬 .天津太阳总辐射资料的均一性分析[J].气候与环境研究, 2015, 20(3): 269-276.
[123] Si P, Luo C Jn, Liang D P. Homogenization of Tianjin monthly near-surface wind speed using RHtestsV4 1951-2014[J]. Theoretical and Applied Climatology, 2018, 132(3/4): 1303-1320.
[124] 司鹏, 罗传军, 姜罕盛, 等 .天津地面相对湿度资料的非均一性检验及订正[J]. 气象, 2018, 44(10): 1332-1341.
[125] Si P, Luo C J, Wang M. Homogenization of Surface Pressure Data in Tianjin, China[J]. Journal of Meteorological Research, 2019, 33(6): 1131-1142.
[126] 司鹏, 梁冬坡, 陈凯华, 等. 城市化对天津近60年平均温度和极端温度事件的增暖影响[J]. 气候与环境研究, 2021, 26(2): 142-154.
[127] Braconnot P S, Harrison P, Kageyama M, et al. Evaluation of climate models using palaeo-climatic data[J]. Nature Climate Change, 2012, 2: 417-424.
[128] Schmidt G A, Annan J D, Bartlein P J, et al. Using palaeo-climate comparisons to constrain future projections in CMIP5[J]. Climate of the Past, 2014, 10: 221-250.
[129] Brazdil R, Pfister C, Wanner H, et al. Historical climatology in Europe-the state of the art[J]. Climate Change, 2005, 70: 363-430.
[130] Ammann C M, Wahl E R. The importance of the geophysical context in statistical evaluations of climate reconstruction procedures[J]. Climate Change, 2007, 85: 71-88.
[131] Küttel M, Luterbacher J, Zorita E, et al. Testing a European winter surface temperature reconstruction in a surrogate climate[J]. Geophysical Research Letters, 2007, 34(7): L07710.
[132] Mann M E, Rutherford S, Wahl E, et al. Robustness of proxy-based climate field reconstruction methods[J]. Journal of Geophysical Research, 2007, 112: D12109.
[133] Riedwyl N, Küttel M, Luterbacher J, et al. Comparison of climate field reconstruction techniques: Application to Europe. Climate Dynamics, 2009, 32: 381-395.
[134] Hans V S, Eduardo Z, Fidel G R. Assessement of three temperature reconstruction methods in the virtual reality of a climate simulation[J]. International Journal of Earth Sciences, 2009, 98: 67-82.
[135] Schmith T, Thejll P. A surrogate ensemble study of climate reconstruction methods: Stochasticity and robustness[J]. Journal of Climate, 2009, 22(4): 951-976.
[136] Smerdon J E. Climate models as a test bed for climate reconstruction methods: Pseudoproxy experiments[J]. Wiley Interdisciplinary Reviews: Climate Change, 2012, 3(1): 63-77.
[137] Tingley M P, Craigmile P F, Haran M, et al. Piecing together the past: Statistical insights into paleoclimatic reconstructions[J]. Quaternary Science Reviews, 2012, 35: 1-22.
[138] Emile-Geay J, Cobb K M, Mann M E, et al. Estimating central equatorial Pacific SST variability over the past millennium Part II: Re-constructions and implications[J]. Journal of Climate, 2013, 26(7): 2329-2352.
[139] Hakim G J, Emile-Geay J, Steig E J, et al. The last millennium climate reanalysis project: Framework and first results[J]. Journal of Geophysical Research-Atmospheres, 2016, 121: 6745-6764.
[140] Mann M E, Bradley R S, Hughes M K. Global-scale temperature patterns and climate forcing over the past six centuries[J]. Nature, 1998, 392: 779-787.
[141] Adams J B, Mann M E, Ammann C M. Proxy evidence for an El Niño-like response to volcanic forcing[J]. Nature, 2003, 426: 274-278.
[142] Mann M E, Zhang Z, Rutherford S, et al. Global signatures and dynamical origins of the little ice age and medieval climate anomaly[J]. Science, 2009, 326: 1256-1260.
[143] Schneider T. Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values[J]. Journal of Climate, 2001, 14(5): 853-871.
[144] Vaccaro A, Julien E, Dominque G, et al. Climate field completion via markov random fields: Application to the HadCRUT4.6 temperature dataset[J]. Journal of Climate, 2021, 34(10): 4169-4188.
[145] Evans M N, Kaplan A, Cane M A. Pacific sea surface temperature field reconstruction from coral δ18 O data using reduced space objective analysis[J]. 2002, Paleoceanography, 17(1): 7-1-7-13.
[146] Smerdon J E, Kaplan A, Chang D, et al. A pseudoproxy evaluation of the CCA and RegEM methods for reconstructing climate fields of the last millennium[J]. Journal of Climate, 2010, 23(18): 4856-4880.
[147] Anchukaitis K J, Wilson R, Briffa K R, et al. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions[J]. Quaternary Science Reviews, 2017, 163: 1-22.
[148] Guillot D, Rajaratnam B, Emile-Geay J. Statistical paleoclimate reconstructions via Markov random fields[J]. The Annals of Applied Statistics, 2015, 9(1): 324-352.
[149] Graham N E, Ammann C M, Fleitmann D, et al. Support for global climate reorganization during the "Medieval Climate Anomaly"[J]. Climate Dynamics, 2011, 37: 1217-1245.
[150] Goosse H E, Crespin S, Dubinkina M F, et al. The role of forcing and internal dynamics in explaining the "Medieval Climate Anomaly"[J]. Climate Dynamics, 2012, 39: 2847-2866.
[151] Phipps S J, Mcgregor H V, Gergis J, et al. Paleoclimate data-model comparison and the role of climate forcings over the Past 1500 years[J]. Journal of Climate, 2013, 26: 6915-6936.
[152] Küttel M, Xoplaki E, Gallego D, et al. The importance of ship log data: Reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750[J]. Climate Dynamics, 2010, 34: 1115-1128.
[153] 王绍武 . 公元 1380 年以来我国华北气温序列的重建[J]. 中国科学:B辑, 1990, 5: 553-560.
[154] 王绍武 . 近百年我国及全球气温变化趋势[J]. 气象, 1990, 16(2): 11-15.
[155] 王绍武 . 根据史料恢复历史温度序列[J]. 气象, 1990, 16(4): 19-23.
[156] 王绍武, 王日昇. 1470年以来我国华东四季与年平均气温变化的研究[J]. 气象学报, 1990, 48(1): 26-35.
[157] 王绍武, 叶瑾琳, 龚道溢, 等 .近百年中国年气温序列的建立[J].应用气象学报, 1998, 9(4): 392-401.
[158] 王绍武, 龚道溢, 叶瑾琳, 等. 1880年以来中国东部四季降水量序列及其变率[J]. 地理学报, 2000, 35(3): 281-293.
[159] 郑景云, 葛全胜, 郝志新, 等 . 1736—1999 年西安与汉中地区年冬季平均气温序列重建[J]. 地理研究, 2003, 22(3): 343-348.
[160] 郝志新, 郑景云, 葛全胜 . 1736 年以来西安气候变化与农业收成的相关分析[J]. 地理学报, 2003, 58(5):735-742.
[161] 郑景云, 刘洋, 葛全胜, 等. 华中地区历史物候记录与1850-2008年的气温变化重建[J]. 地理学报, 2015, 70(5): 696-704.
[162] Shi H, Wang B, Cook Edward R, et al. Asian summer precipitation over the past 544 years reconstructed by merging tree rings and historical documentary records[J]. Journal of Climate, 2018, 31(19): 7845-7861.
[163] 于革, Xiankun K E. 利用花粉资料重建加拿大 1Ka来气 温 变 化 序 列 [J]. 科 学 通 报 , 2002, 47(13): 1018-1021.
[164] 王海军, 涂诗玉, 陈正洪 . 日气温数据缺测的插补方法试验与误差分析[J]. 气象, 2008, 34(7): 83-91.
[165] 余予, 李俊, 任芝花, 等. 标准序列法在日平均气温缺测数据插补中的应用[J]. 气象, 2012, 38(9): 1135-1139.
[166] Wang J L, Yang B. A millennial summer temperature reconstruction for the Eastern Tibetan Plateau from tree-ring width[J]. Journal of Climate, 2015, 28: 5289-5304.