专题:气象赋能经济社会高质量发展

长年代气候观测资料构建研究进展

  • 司鹏 ,
  • 徐文慧 ,
  • 王敏
展开
  • 1. 天津市气象信息中心,天津 300074
    2. 国家气象信息中心,北京 100081
    3. 广东省韶关市气象局,广东 512028
司鹏,高级工程师,研究方向为气象数据分析处理及气候变化,电子信箱: spsbox@163.com

收稿日期: 2022-08-23

  修回日期: 2023-02-23

  网络出版日期: 2023-11-21

基金资助

国家自然科学基金青年科学基金项目(41905132)

Review of climate observation series construction over long-time scale

  • SI Peng ,
  • XU Wenhui ,
  • WANG Min
Expand
  • 1. Tianjin Meteorological Information Center, Tianjin 300074, China
    2. National Meteorological Information Centre, Beijing 100081, China
    3. Shaoguan Meteorological Service, Shaoguan 512028, China

Received date: 2022-08-23

  Revised date: 2023-02-23

  Online published: 2023-11-21

摘要

归纳了近年来国内外在全球、区域和局地尺度长年代气候观测资料构建研究中所取得的重要成果,分析了全球表面温度及降水等气候数据集产品及其为气候变化科学方面所呈现的重要价值,讨论了长年代序列构建过程中需要改进的技术方法以及亟待解决的关键科技问题。分析表明,长年代气候资料的构建技术在支撑气候变化业务发展方面取得了一定进展,但立足新形势下数据供给能力建设的迫切需要,丰富要素种类、恢复历史资料完整性、提高数据产品质量、细化研究对象空间尺度及研究要素时间尺度仍是今后需要解决的关键问题。

本文引用格式

司鹏 , 徐文慧 , 王敏 . 长年代气候观测资料构建研究进展[J]. 科技导报, 2023 , 41(21) : 31 -48 . DOI: 10.3981/j.issn.1000-7857.2023.21.004

Abstract

The numbers of extreme weather and climate events in many parts of the world are increasing due to climate change, and this phenomenon will become more frequent and severe. A complete and reliable climate observation series over long-time scale is an important basis for interpreting climate change and evaluating model simulation performance. It is also a reliable observation basis for deeply and systematically detecting the characteristics of global, regional or local extreme climate change and predicting the future trend of climate change. In this paper, some important research achievements are summarized, which have been recently made in construction of long-term climate observation series on global, regional and local scales at home and abroad. Several global surface temperature and precipitation climate datasets and their important values for the science of climate change are analyzed. Moreover, technologies and key scientific problems in constructing climate observation series over long-time scale that need to be improved and solved urgently are also discussed. Results indicate that some progress has been made in construction technology of climate observation series over long-time scale for supporting the development of climate change operations. However, there are still some main problems that need to be solved in view of the urgent need of data supply capacity under new situation, i. e., enriching the types of the observed elements, restoring the integrity of historical data, improving the quality of data products, and refining the spatial scale of the object and the temporal scale of the elements. Therefore, a scientific basis can be provided for further enhancing the application value of precious long-term climate observations in meteorological service guarantee and scientific and technological innovation in China.

参考文献

[1] Xu C D, Wang J F, Li Q X, et al. A new method for temperature spatial interpolation based on sparse historical stations[J]. Journal of Climate, 2018, 31(5): 1757-1770.
[2] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407.
[3] Li R, Arkin P, Smith T M, et al. Global precipitation trends in 1900—2005 from a reconstruction and coupled model simulations[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(4): 1679-1689.
[4] Saha S, Chakraborty D, Paul R K, et al. Disparity in rainfall trend and patterns among different regions: Analysis of 158 years' time series of rainfall dataset across India[J]. Theoretical and Applied Climatology, 2018, 134(1/2): 381-395.
[5] Wang J F, Xu C D, Hu M G, et al. Global land surface air temperature dynamics since 1880[J]. International Journal of Climatology, 2018, 38(S1): e466-e474.
[6] Gehne M, Hamill T M, Kiladis G N, et al. Comparison of global precipitation estimates across a range of temporal and spatial scales[J]. Journal of Climate, 2016, 29(21): 7773-7795.
[7] Kamizawa N, Takahashi H G. Projected trends in interannual variation in summer seasonal precipitation and its extremes over the tropical Asian monsoon regions in CMIP5[J]. Journal of Climate, 2018, 31(20): 8421-8439.
[8] Shu F, Mao K F, Xia X Q, et al. Dataset of daily near-surface air temperature in China from 1979 to 2018[J]. Earth System Science Data, 2022, 14(3): 1413-1432.
[9] Liang P, Yan Z W, Li Z. Climatic warming in Shanghai during 1873—2019 based on homogenised temperature records[J]. Advances in Climate Change Research, 2022, 13(4): 496-507.
[10] 战云健, 陈东辉, 廖捷, 等 . 中国 60 城市站 1901-2019年日降水数据集的构建[J]. 气候变化研究进展, 2022, 18(6): 670-682.
[11] Brohan P, Kennedy J J, Harris I, et al. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850[J]. Journal of Geophysical Research, 2006, 111: D12106.
[12] 李庆祥, 董文杰, 李伟, 等 . 近百年中国气温变化中的不确定性估计[J]. 科学通报, 2010, 55(16): 1544-1554.
[13] Thomas S, Qin Dahe, Gian-Kasper P, et al. Climate Change 2013: The physical science basis, Technical Summary[R]. IPCC WGI Fifth Assessment Report, Cambridge: Cambridge University Press, 2013.
[14] Sun X B, Ren G Y, Xu W H, et al. Global land-surface air temperature change based on the new CMA GLSAT dataset[J]. Science Bulletin, 2017, 62(4): 236-238.
[15] Aguilar E, Auer I, Brunet M, et al. Guidance on metadata and homogenization[A]. WMO-TD No. 1186, WCDMP No. 53. Geneva, Switzerland: World Meteorological Organization, 2003, 55.
[16] Alexandersson H. A homogeneity test applied to precipitation data[J]. Journal of Climate, 1986, 6(6): 661-675.
[17] Yan Z W, Yang C, Jones P. Influence of inhomogeneity on the estimation of mean and extreme temperature trends in Beijing and Shanghai[J]. Advances in Atmospheric Sciences, 2001, 18(3): 309-322.
[18] Alexander L V, Zhang X B, Peterson T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research, 2006, 111: D05109.
[19] Yan Z W, Jones P. Detecting inhomogeneity in daily climate series using wavelet analysis[J]. Advances in Atmospheric Sciences, 2008, 25(2): 157-163.
[20] Li Q X,Zhang H Z, Chen J, et al. A mainland China Homogenized historical temperature dataset of 1951-2004[J]. Bulletin of the American Meteorological Society, 2009, 90(8): 1062-1065.
[21] 严中伟, 王君, 李珍, 等 . 基于均一化观测序列评估城市化的气候效应[J]. 气象科技进展, 2014, 4(3): 41-48.
[22] 严中伟, 李珍, 夏江江. 气候序列的均一化——定量评估气候变化的基础[J]. 中国科学: 地球科学, 2014, 44(10): 2101-2111.
[23] Li Q X, Zhang L,Xu W H,et al. Comparisons of time series of annual mean surface air temperature for China since the 1900s Observation, model simulation and extended reanalysis[J]. Bulletin of the American Meteorological Society, 2017, 98(4): 699-711.
[24] Dumitrescu A, Cheval S, Guijarro J A. Homogenization of a combined hourly air temperature dataset over Romania[J]. International Journal of Climatology, 2020, 40(5): 2599-2608.
[25] King J C, Turner J, Colwell S, et al. Inhomogeneity of the surface air temperature record from Halley, Antarctica[J]. Journal of Climate, 2021, 34(12): 4771-4783.
[26] Kessabi R, Mohamed H, Guijarro J A, et al. Homogenization and trends analysis of monthly precipitation series in the Fez-Meknes Region, Morocco[J]. Climate, 2022, 10(64): 2-17.
[27] Peterson T C, Vose R S. An overview of the global historical climatology network temperature database[J]. Bulletin of the American Meteorological Society, 1997, 78(12): 2837-2850.
[28] Peterson T C, Easterling D, Karl T R, et al. Homogeneity adjustments of in situ atmospheric climate data: A review[J]. International Journal of Climatology, 1998, 18(13): 1493-1517.
[29] Peterson T C, Karl T R, Jamason P F, et al. First difference method: Maximizing station density for the calculation of long-term global temperature change[J]. Journal of Geophysical Research Atmospheres, 1998, 103(D20): 25967-25974.
[30] Peterson T C, Vose R S, Schmoyer R, et al. Global historical climatology network (GHCN) quality control of monthly temperature data[J]. International Journal of Climatology, 1998, 18(11): 1169-1179.
[31] Lawrimore J H,Menne M J,Gleason B E,et al. An overview of the global historical climatology network monthly mean temperature dataset,Version 3[J]. Journal of Geophysical Research Atmospheres,2011, 116: D19121.
[32] Menne M J, Williams C N, Gleason B E. The global historical climatology network monthly temperature dataset,Version 4[J]. Journal of Climate, 2018, 31(24): 9835-9854.
[33] Jones P D. Hemispheric surface air temperature variations: A reanalysis and an update to 1993[J]. Journal of Climate, 1994, 7(11): 1794-1802.
[34] Jones P D, New M, Parker D, et al. Surface air temperature and its variations over the last 150 years[J]. Reviews of Geophysics, 1999, 37(2): 173-199.
[35] Jones P D, Moberg A. Hemispheric and large scale surface air temperature variations: An extensive revision and an update to 2001[J]. Journal of Climate, 2003, 16(2): 206-223.
[36] Mitchell T D, Jones P D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids[J]. International Journal of Climatology, 2005, 25(6): 693-712
[37] Jones P D, Lister D H, Osborn T J, et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010[J]. Journal of Geophysical Research, 2012, 117(D5): D05127.
[38] Hansen J, Lebedeff S. Global trends of measured surface air temperature[J]. Journal of Geophysical Research, 1987, 92(D11): 13345-13372.
[39] Hansen J, Ruedy R, Glascoe J, et al. GISS analysis of surface temperature change[J]. Journal of Geophysical Research, 1999, 104(D24): 30997-31022.
[40] Hansen J, Ruedy R, Sato M, et al. A closer look at United States and global surface temperature change[J]. Journal of Geophysical Research, 2001, 106(D20): 23947-23963.
[41] Hansen J, Ruedy R, Sato M, et al. Global surface temperature change[J]. Reviews of Geophysics, 2010, 48(4): 1-29.
[42] IPCC. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovern-mental panel on climate change[R]. Cambridge: Cambridge University Press, 2013.
[43] IPCC. Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovern-mental panel on climate change[R]. Cambridge: Cambridge University Press. 2021.
[44] Rohde R A, Hausfather Z. The Berkeley earth land/ ocean temperature record[J]. Earth System Science Data,2020, 12(4): 3469-3479.
[45] Smith T M, Arkin P A, Ren Li, et al. Improved reconstruction of global precipitation since 1900[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(10): 1505-1517.
[46] Ren Li, Arkin P A, Smith T M, et al. Global precipitation trends in 1900-2005 from a reconstruction and coupled model simulations[J]. Journal of Geophysical Research, 2013, 118(4): 1679-1689.
[47] 闻新宇, 王绍武, 朱锦红, 等 . 英国 CRU 高分辨率格点资料揭示的 20世纪中国气候变化[J]. 大气科学, 2006, 30(5): 894-904.
[48] 马柱国, 邵丽娟.中国北方近百年干湿变化与太平洋年代际振荡的关系[J]. 大气科学, 2006, 30(3): 464-474.
[49] Cao L J, Zhao P, Yan Z W, et al. Instrumental temperature series in eastern and central China back to the nineteenth century[J]. Journal of Geophysical Research, 2013, 118: 8197-8207.
[50] Cao L J, Yan Z W, Zhao P, et al. Climatic warming in China during 1901-2015 based on an extended dataset of instrumental temperature records[J]. Environmental Research Letters, 2017, 12: 064005.
[51] Xu W H, Li Q X, Yang S, et al. Overview of global monthly surface temperature data in the past century and preliminary integration[J]. Advances in Climate Change Research, 2014, 3(5): 111-117.
[52] 杨溯, 徐文慧, 许艳, 等 . 全球地面降水月值历史数据集研制[J]. 气象学报, 2016, 74(2): 259-270.
[53] Xu W H, Li Q X, Jones P, et al. A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900[J]. Climate Dynamics, 2018, 50(15): 2513-2536.
[54] Yun X, Huang B Y, Cheng J Y, et al. A new merge of global surface temperature datasets since the start of the 20th century[J]. Earth System Science Data, 2019, 11(4): 1629-1643.
[55] Huang B, Thorne P W, Banzon V F, et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons[J]. Journal of Climate, 2017, 30(20): 8179-8205.
[56] Huang B, Angel W, Boyer T, et al. Evaluating SST analyses with independent ocean profile observations[J]. Journal of Climate, 2018, 31(13): 5015-5030.
[57] Li Q X, Sun W B, Huang B Y, et al. Consistency of global warming trends strengthened since 1880s[J]. Science Bulletin, 2020, 65(20): 1709-1712.
[58] Li Q X, Sun W B, Yun X, et al. An updated evaluation of the global mean land surface air temperature and surface temperature trends basedon CLSAT and CMST[J]. Climate Dynamics, 2021, 56(1): 635-650.
[59] Sun W B, Li Q X, Huang B Y, et al. The assessment of global surface temperature change from 1850s: The C-LSAT2.0 ensemble and the CMST-Interim datasets[J]. Advances in Atmospheric Sciences, 2021, 38(5): 875-888.
[60] Li Q X, Dong W J, Jones P. Continental scale surface air temperature variations: Experience derived from the Chinese region[J]. Earth Science Reviews, 2020, 200: 102998.
[61] Vincent L A, Zhang X, Bonsal B R, et al. Homogenization of daily temperatures over Canada[J]. Journal of Climate, 2002, 15(11): 1322-1334.
[62] Della-Marta P M, Wanner H. A method of homogenizing the extremes and mean of daily temperature measurements[J]. Journal of Climate, 2006, 19(17): 4179-4197.
[63] Vincent L A, Wang X L, Milewska E J, et al. A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis[J]. Journal of Geophysical Research-Atmospheres, 2012, 117(D18): D18110.
[64] Trewin B. A daily homogenized temperature dataset for Australia[J]. International Journal of Climatology, 2013, 33: 1510-1529.
[65] Hewaarachchi A P, Li Y G, Lund R, et al. Homogenization of daily temperature data[J]. Journal of Climate, 2017, 30(3): 985-999.
[66] Yan Z W, Ding Y H, Zhai Panmao, et al. Re-assessing climatic warming in China since 1900[J]. Journal of Meteorological Research, 2020, 34(2): 243-251.
[67] Bonsal B R, Zhang X, Vincent L A, et al. Characteristics of daily and extreme temperatures over Canada[J]. Journal of Climate, 2001, 14(9): 1959-1976.
[68] Si P, Zheng Z F, Ren Y, et al. Effects of urbanization on daily temperature extremes in North China[J]. Journal of Geographical Sciences, 2014, 24(2): 349-362.
[69] Zhang W X, Zhou T J, Zou L W, et al. Reduced exposure to extreme precipitation from 0.5℃ less warming in global land monsoon regions[J]. Nature Communications, 2018, 9(1): 3153.
[70] Nayak S, Dairaku K, Takayabu I, et al. Extreme precipitation linked to temperature over Japan: Current evaluation and projected changes with multi-model ensemble downscaling[J]. Climate Dynamics, 2018, 51(11): 4385-4401.
[71] Li L C, Yao N, Li Y, et al. Future projections of extreme temperature events in different sub-regions of China[J]. Atmospheric Research, 2019, 217: 150-164.
[72] Yu L J,Zhong S Y, Qiu Y B, et al. Trend in short-duration extreme precipitation in Hong Kong[J]. Frontiers in Environmental Science, 2020, 8: 581536.
[73] Menne M J, Durre I, Vose R S, et al. An overview of the global historical climatology network-daily database[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(7): 897-910.
[74] Rohde R, Muller R A, Jacobsen R, et al. A new estimate of the average earth surface land temperature spanning 1753 to 2011[J]. Geoinformatics & Geostatistics, 2013, 1: 1.
[75] Rohde R, Muller R, Jacobsen R, et al. Berkeley earth temperature averaging process[J]. Geoinformatics & Geostatistics, 2013, 1: 2.
[76] Rohde R, Lead S, Berkeley earth surface temperature. Comparison of Berkeley earth, NASA GISS, and Hadley CRU averaging techniques on ideal synthetic data[R]. 2013.
[77] Png I P L, Chen Y, Chu J H, et al. Temperature, precipitation and sunshine across China, 1912-1951: A new daily instrumental dataset[J]. Geoscience Data Journal, 2020, 7(2): 90-101.
[78] Li Y, Tinz B, von Storch H, et al. Construction of a surface air temperature series for Qingdao in China for the period 1899 to 2014[J]. Earth System Science Data, 2018, 10(1): 643-652.
[79] Yan Z W, Yang C, Jones P. Influence of inhomogeneity on the estimation of mean and extreme temperature trends in Beijing and Shanghai[J]. Advances in Atmospheric Sciences, 2001, 18(3): 309-322.
[80] 唐国利,任国玉. 近百年中国地表气温变化趋势的再分析[J]. 气候与环境研究, 2005, 10(4): 791-798.
[81] 司鹏, 郝立生, 罗传军, 等 . 河北保定气象站长序列气温资料缺测记录插补和非均一性订正[J]. 气候变化研究进展, 2017, 13(1): 41-51.
[82] 司鹏, 郝立生, 罗传军, 等 . 华北平原保定气象站百年降水序列的建立[J]. 气候变化研究快报, 2017, 6(3): 177-185.
[83] Wang X L, Wen Q H, Wu Y H. Penalized maximal ttest for detecting undocumented mean change in climate data series[J]. Journal of Applied Meteorology and Climatology, 2007, 46(6): 916-931.
[84] Wang X L. Penalized maximal F test for detecting undocumented meanshift without trend change[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(3): 368-384.
[85] Wang X L, Chen H F, Wu Y H, et al. New techniques for the detection and adjustment of shifts in daily precipitation data series[J]. Journal of Applied Meteorology and Climatology, 2010, 49(12): 2416-2436.
[86] Si P, Li Q X, Jones P. Construction of homogenized daily surface air temperature for the city of Tianjin during 1887-2019[J]. Earth System Science Data, 2021, 13(5): 2211-2226.
[87] 司鹏, 郭军, 赵煜飞, 等 . 北京 1841年以来均一化最高和最低气温日值序列的构建[J].气象学报, 2022, 80(1): 136-152.
[88] 司鹏, 郝立生, 傅宁, 等 . 河北保定百年均一化逐日气温序列的建立及其气候变化特征[J]. 大气科学学报, 2023, 46(2): 297-309.
[89] Easterling D R, eterson T C. The effect of artificial discontinuities on recent trends in minimum and maximum temperatures[J]. Atmospheric Research,1995, 37(1-3): 19-26.
[90] Easterling D R,Peterson T C. A new method for detecting undocumented discontinuities in climatological time series[J]. International Journal of Climatology,1995, 15(4): 369-377.
[91] Quayle R, Easterling D, Karl T, et al. Effects of recent thermometer changes in the cooperative station network[J]. Bulletin of the American Meteorological Society, 1991, 72(11): 1718-1723.
[92] 唐国利, 丁一汇, 王绍武, 等 . 近百年温度曲线的对比分析[J]. 气候变化研究进展, 2009, 5(2): 71-78.
[93] Caussinus H,Mestre O. Detection and correction of artificial shifts in climate series[J]. Journal of the Royal Statistical Society,2004, 53(3): 405-425.
[94] Jones P D, Lister D H, Li Q X. Urbanization effects in large-scale temperature records, with an emphasis on China[J]. Journal of Geophysical Research, 2008, 113(D16): D16122.
[95] Menne M J, Williams Jr C N. Homogenization of temperature series via pairwise comparisons[J]. Journal of Climate, 2009, 22(7): 1700-1717.
[96] Chenoweth M. A possible discontinuity in the U.S. historical temperature record[J]. Journal of Climate, 1992, 5(10): 1172-1179.
[97] Della-Marta P, Wanner H. A method of homogenizing the extremes and mean of daily temperature measurements[J]. Journal of Climate, 2006, 19(17): 4179-4197.
[98] Haimberger L, Tavolato C, Sperka S. Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations[J]. Journal of Climate, 2012, 25(23): 8108-8131.
[99] Rahimzadeh F, Zavareh M N. Effects of adjustment for non-climatic discontinuities on determination of temperature trends and variability over Iran[J]. International Journal of Climatology, 2014, 34(6): 2079-2096.
[100] Winkler J A, Skaggs R H, Baker D G. Effect of temperature adjustments on the Minneapolis-St. Paul urban heat island[J]. Journal of Applied Meteorology, 1981, 20(11): 1295-1300.
[101] Alexandersson H. A homogeneity test applied to precipitation data[J]. Journal of Climatology, 1986, 6(6): 661-675.
[102] 翟盘茂.中国历史探空资料中的一些过失误差及偏差问题[J]. 气象学报, 1997, 55(5): 563-572.
[103] 刘小宁. 我国40 年年平均风速的均一性检验[J]. 应用气象学报, 2000, 11(1): 27-34.
[104] Li Q X, Liu X N, Zhang H Z, et al. Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data [J]. Advances in Atmospheric Sciences, 2004, 21(2): 260-268.
[105] 鞠晓慧, 屠其璞, 李庆祥 . 我国太阳总辐射月总量资料的均一性检验及订正[J]. 南京气象学院学报, 2006, 29(3): 336-341.
[106] 吴必文, 温华洋, 惠军. 基于Γ分布的气压序列非均一性检验方法初探[J]. 应用气象学报, 2008, 19(4): 496-501.
[107] 郭艳君, 丁一汇. 近50年我国探空温度序列均一化及变化趋势[J]. 应用气象学报, 2008, 19(6): 646-654.
[108] 曹丽娟, 鞠晓慧, 刘小宁. PMFT 方法对我国年平均风速的均一性检验[J]. 气象, 2010, 36(10): 52-56.
[109] 王秋香, 李庆祥, 周浩楠, 等 .中国降水序列均一性研究及对比分析[J]. 气象, 2012, 38(11): 1390-1398.
[110] 李庆祥, 彭嘉栋, 沈艳 . 1900-2009 年中国均一化逐月降水数据集研制[J]. 地理学报, 2012, 67(3): 301-311.
[111] Li Z, Yan Z W, Cao L J, et al. Adjusting inhomogeneous daily temperature variability using wavelet analysis[J]. International Journal of Climatology,2014, 34(4): 1196-1207.
[112] Li Z, Yan Z W, Wu H. Updated homogenized Chinese temperature series with physical consistency[J]. Atmospheric and Oceanic Science Letters, 2015, 8(1): 17-22.
[113] 朱亚妮, 曹丽娟, 唐国利, 等 .中国地面相对湿度非均一性检验及订正[J]. 气候变化研究进展, 2015, 11(6): 379-386.
[114] 远芳, 曹丽娟, 唐国利, 等.中国825个基准、基本站地面气压系统误差的检验与订正[J]. 气候变化研究进展,2015, 11(5): 331-336.
[115] Li Z, Yan Z W, Cao L J, et al. Further-adjusted long-term temperature series in China based on MASH[J]. Advances in Atmospheric Sciences, 2018, 35(8): 909-917.
[116] Li Q X, Zhang H Z, Liu X N, et al. A mainland China homogenized historical temperature dataset of 1951-2004[J]. Bulletin of the American Meteorological Society, 2009, 90(8): 1062-1065.
[117] Xu W H, Li Q X, Wang X L, et al. Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices[J]. Journal of Geophysical Research, 2013, 118(17): 9708-9720.
[118] 杨溯, 李庆祥 .中国降水量序列均一性分析方法及数据集更新完善[J]. 气候变化研究进展, 2014, 10(4): 276-281.
[119] Hu Z Y, Li Q X, Chen X, et al. Climate changes in temperature and precipitation extremes in an alpine grassland of Central Asia[J]. Theoretical and Applied Climatology, 2016, 126: 519-531.
[120] 司鹏, 徐文慧 . 利用 RHtestsV4 软件包对天津 1951~2012 年逐日气温序列的均一性分析[J]. 气候与环境研究, 2015, 20(6): 663-674.
[121] 司鹏, 王冀, 李慧君, 等. 省级地面气象观测资料均一化处理技术与应用[M]. 北京: 气象出版社, 2020.
[122] 司鹏, 解以扬 .天津太阳总辐射资料的均一性分析[J].气候与环境研究, 2015, 20(3): 269-276.
[123] Si P, Luo C Jn, Liang D P. Homogenization of Tianjin monthly near-surface wind speed using RHtestsV4 1951-2014[J]. Theoretical and Applied Climatology, 2018, 132(3/4): 1303-1320.
[124] 司鹏, 罗传军, 姜罕盛, 等 .天津地面相对湿度资料的非均一性检验及订正[J]. 气象, 2018, 44(10): 1332-1341.
[125] Si P, Luo C J, Wang M. Homogenization of Surface Pressure Data in Tianjin, China[J]. Journal of Meteorological Research, 2019, 33(6): 1131-1142.
[126] 司鹏, 梁冬坡, 陈凯华, 等. 城市化对天津近60年平均温度和极端温度事件的增暖影响[J]. 气候与环境研究, 2021, 26(2): 142-154.
[127] Braconnot P S, Harrison P, Kageyama M, et al. Evaluation of climate models using palaeo-climatic data[J]. Nature Climate Change, 2012, 2: 417-424.
[128] Schmidt G A, Annan J D, Bartlein P J, et al. Using palaeo-climate comparisons to constrain future projections in CMIP5[J]. Climate of the Past, 2014, 10: 221-250.
[129] Brazdil R, Pfister C, Wanner H, et al. Historical climatology in Europe-the state of the art[J]. Climate Change, 2005, 70: 363-430.
[130] Ammann C M, Wahl E R. The importance of the geophysical context in statistical evaluations of climate reconstruction procedures[J]. Climate Change, 2007, 85: 71-88.
[131] Küttel M, Luterbacher J, Zorita E, et al. Testing a European winter surface temperature reconstruction in a surrogate climate[J]. Geophysical Research Letters, 2007, 34(7): L07710.
[132] Mann M E, Rutherford S, Wahl E, et al. Robustness of proxy-based climate field reconstruction methods[J]. Journal of Geophysical Research, 2007, 112: D12109.
[133] Riedwyl N, Küttel M, Luterbacher J, et al. Comparison of climate field reconstruction techniques: Application to Europe. Climate Dynamics, 2009, 32: 381-395.
[134] Hans V S, Eduardo Z, Fidel G R. Assessement of three temperature reconstruction methods in the virtual reality of a climate simulation[J]. International Journal of Earth Sciences, 2009, 98: 67-82.
[135] Schmith T, Thejll P. A surrogate ensemble study of climate reconstruction methods: Stochasticity and robustness[J]. Journal of Climate, 2009, 22(4): 951-976.
[136] Smerdon J E. Climate models as a test bed for climate reconstruction methods: Pseudoproxy experiments[J]. Wiley Interdisciplinary Reviews: Climate Change, 2012, 3(1): 63-77.
[137] Tingley M P, Craigmile P F, Haran M, et al. Piecing together the past: Statistical insights into paleoclimatic reconstructions[J]. Quaternary Science Reviews, 2012, 35: 1-22.
[138] Emile-Geay J, Cobb K M, Mann M E, et al. Estimating central equatorial Pacific SST variability over the past millennium Part II: Re-constructions and implications[J]. Journal of Climate, 2013, 26(7): 2329-2352.
[139] Hakim G J, Emile-Geay J, Steig E J, et al. The last millennium climate reanalysis project: Framework and first results[J]. Journal of Geophysical Research-Atmospheres, 2016, 121: 6745-6764.
[140] Mann M E, Bradley R S, Hughes M K. Global-scale temperature patterns and climate forcing over the past six centuries[J]. Nature, 1998, 392: 779-787.
[141] Adams J B, Mann M E, Ammann C M. Proxy evidence for an El Niño-like response to volcanic forcing[J]. Nature, 2003, 426: 274-278.
[142] Mann M E, Zhang Z, Rutherford S, et al. Global signatures and dynamical origins of the little ice age and medieval climate anomaly[J]. Science, 2009, 326: 1256-1260.
[143] Schneider T. Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values[J]. Journal of Climate, 2001, 14(5): 853-871.
[144] Vaccaro A, Julien E, Dominque G, et al. Climate field completion via markov random fields: Application to the HadCRUT4.6 temperature dataset[J]. Journal of Climate, 2021, 34(10): 4169-4188.
[145] Evans M N, Kaplan A, Cane M A. Pacific sea surface temperature field reconstruction from coral δ18 O data using reduced space objective analysis[J]. 2002, Paleoceanography, 17(1): 7-1-7-13.
[146] Smerdon J E, Kaplan A, Chang D, et al. A pseudoproxy evaluation of the CCA and RegEM methods for reconstructing climate fields of the last millennium[J]. Journal of Climate, 2010, 23(18): 4856-4880.
[147] Anchukaitis K J, Wilson R, Briffa K R, et al. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions[J]. Quaternary Science Reviews, 2017, 163: 1-22.
[148] Guillot D, Rajaratnam B, Emile-Geay J. Statistical paleoclimate reconstructions via Markov random fields[J]. The Annals of Applied Statistics, 2015, 9(1): 324-352.
[149] Graham N E, Ammann C M, Fleitmann D, et al. Support for global climate reorganization during the "Medieval Climate Anomaly"[J]. Climate Dynamics, 2011, 37: 1217-1245.
[150] Goosse H E, Crespin S, Dubinkina M F, et al. The role of forcing and internal dynamics in explaining the "Medieval Climate Anomaly"[J]. Climate Dynamics, 2012, 39: 2847-2866.
[151] Phipps S J, Mcgregor H V, Gergis J, et al. Paleoclimate data-model comparison and the role of climate forcings over the Past 1500 years[J]. Journal of Climate, 2013, 26: 6915-6936.
[152] Küttel M, Xoplaki E, Gallego D, et al. The importance of ship log data: Reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750[J]. Climate Dynamics, 2010, 34: 1115-1128.
[153] 王绍武 . 公元 1380 年以来我国华北气温序列的重建[J]. 中国科学:B辑, 1990, 5: 553-560.
[154] 王绍武 . 近百年我国及全球气温变化趋势[J]. 气象, 1990, 16(2): 11-15.
[155] 王绍武 . 根据史料恢复历史温度序列[J]. 气象, 1990, 16(4): 19-23.
[156] 王绍武, 王日昇. 1470年以来我国华东四季与年平均气温变化的研究[J]. 气象学报, 1990, 48(1): 26-35.
[157] 王绍武, 叶瑾琳, 龚道溢, 等 .近百年中国年气温序列的建立[J].应用气象学报, 1998, 9(4): 392-401.
[158] 王绍武, 龚道溢, 叶瑾琳, 等. 1880年以来中国东部四季降水量序列及其变率[J]. 地理学报, 2000, 35(3): 281-293.
[159] 郑景云, 葛全胜, 郝志新, 等 . 1736—1999 年西安与汉中地区年冬季平均气温序列重建[J]. 地理研究, 2003, 22(3): 343-348.
[160] 郝志新, 郑景云, 葛全胜 . 1736 年以来西安气候变化与农业收成的相关分析[J]. 地理学报, 2003, 58(5):735-742.
[161] 郑景云, 刘洋, 葛全胜, 等. 华中地区历史物候记录与1850-2008年的气温变化重建[J]. 地理学报, 2015, 70(5): 696-704.
[162] Shi H, Wang B, Cook Edward R, et al. Asian summer precipitation over the past 544 years reconstructed by merging tree rings and historical documentary records[J]. Journal of Climate, 2018, 31(19): 7845-7861.
[163] 于革, Xiankun K E. 利用花粉资料重建加拿大 1Ka来气 温 变 化 序 列 [J]. 科 学 通 报 , 2002, 47(13): 1018-1021.
[164] 王海军, 涂诗玉, 陈正洪 . 日气温数据缺测的插补方法试验与误差分析[J]. 气象, 2008, 34(7): 83-91.
[165] 余予, 李俊, 任芝花, 等. 标准序列法在日平均气温缺测数据插补中的应用[J]. 气象, 2012, 38(9): 1135-1139.
[166] Wang J L, Yang B. A millennial summer temperature reconstruction for the Eastern Tibetan Plateau from tree-ring width[J]. Journal of Climate, 2015, 28: 5289-5304.
文章导航

/