[1] 吴大方, 任浩源, 王峰 . 航天飞行器轻质纳米材料高温隔热性能[J]. 航空学报, 2018, 39(4): 148-159.
[2] 孙健, 刘伟强 . 高超声速飞行器前缘疏导式热防护结构的实验研究[J]. 物理学报, 2014, 63(9): 094401-094408.
[3] 汤晓英. 微系统技术发展和应用[J]. 现代雷达, 2016, 38(12): 45-50.
[4] Feng W, Qin M, Feng Y. Toward highly thermally conductive all-carbon composites: Structure control[J]. Carbon, 2016(109): 575-597.
[5] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
[6] Zhang X, Hou L, Ciesielski A, et al. 2D materials beyond graphene for high-performance energy storage applications[J]. Advanced Energy Materials, 2016, 6(23): 1600671.
[7] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[8] Claire B, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. The Journal of Physical Chemistry B, 2004, 108(52): 19912-19916.
[9] Suk J W, Kitt A, Carl W M, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates[J]. ACS Nano, 2011, 5(9): 6916-6924.
[10] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.
[11] Peng L, Xu Z, Liu Z, et al. Ultrahigh thermal conductive yet superflexible graphene films[J]. Advanced Materials, 2017, 29(27): 1700589.
[12] Liu J, Liu Y F, Zhang H B, et al. Superelastic and multifunctional graphene-based aerogels by interfacial reinforcement with graphitized carbon at high temperatures[J]. Carbon, 2018(132): 95-103.
[13] Shen B, Zhai W T, Zheng W G. Ultrathin flexible fraphene film: An excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials, 2014, 24(28): 4542-4548.
[14] 段文晖, 张刚 . 纳米材料热传导[M]. 北京: 科学出版社, 2017.
[15] Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8): 569-581.
[16] Wei L, Yan H, Jia P, et al. Effects of stone-wales defects on the thermal conductivity of carbon nanotubes[J]. Journal of Heat Transfer, 2012, 134(9): 092401.
[17] Dong Y, Fei M, Sun Y, et al. Influence of typical defects on thermal conductivity of graphene nanoribbons: An equilibrium molecular dynamics simulation[J]. Applied Surface Science, 2012, 258(24): 9926-9931.
[18] Feng T L, Ruan X L, Ye Z Q, et al. Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration[J]. Physical Review B, 2015, 91(22): 224301.
[19] Liu D, Ping Y, Yuan X, et al. The defect location effect on thermal conductivity of graphene nanoribbons based on molecular dynamics[J]. Physics Letters A, 2015, 379(9): 810-814.
[20] Yue S Y, Ouyang T, Hu M. Diameter dependence of lattice thermal conductivity of single-walled carbon nanotubes: Study from ab initio[J]. Scientific Reports, 2015(5): 15440.
[21] Sonvane Y, Gupta S K, Raval P, et al. Length, width and roughness dependent thermal conductivity of graphene nanoribbons[J]. Chemical Physics Letters, 2015(634): 16-19.
[22] Suchismita G, Wenzhong B, Nika D L, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature Materials, 2010, 9(7): 555-558.
[23] 王兰喜, 何延春, 王虎, 等 . 石墨烯导热纸研究进展[J].材料导报, 2023, 3(37): 20110183.
[24] 叶星柯, 文琴龙, 索军营, 等 . 高导热石墨烯膜制备与研究进展[C]. 南昌: 第十届中国航空学会青年科技论坛文集, 2022: 299-306.
[25] Shi J, Dong Y, Fisher T, et al. Thermal transport across carbon nanotube-graphene covalent and van der Waals junctions[J]. Journal of Applied Physics, 2015, 118(4): 04430201-04430208.
[26] Varshney V, Patnaik S S, Roy A K, et al. Modeling of thermal transport in pillared-graphene architectures[J]. ACS Nano, 2010, 4(2): 1153-1161.
[27] Tan X, Yuan Q, Qiu M, et al. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: A mini review[J]. Journal of Materials Science & Technology, 2022(117): 238-250.
[28] Shahil K M F, Baladin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters, 2012, 12(2): 861-867.
[29] Mahanta N K, Abramson A R. Thermal conductivity of graphene and graphene oxide nanoplatelets[C]. 13th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2012.
[30] Gao Z, Yong Z, Fu Y, et al. Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots[J]. Carbon, 2013, 61(5): 342-348.
[31] Xiang J, Drzal L T. Thermal conductivity of exfoliated graphite nanoplatelet paper[J]. Carbon, 2011, 49(3): 773-778.
[32] Song N J, Chen C M, Lu C X, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders[J]. Journal of Materials Chemistry A, 2014, 2(39): 16563-16568.
[33] Huang S Y, Zhao B, Zhang K, et al. Enhanced reduction of graphene oxide on recyclable Cu foils to fabricate graphene films with superior thermal conductivity[J]. Scientific Reports, 2015, 5(1): 14260.
[34] Xin G, Sun H, Hu T, et al. Large-area freestanding graphene paper for superior thermal management[J]. Advanced Materials, 2014, 26(26): 4521-4526.
[35] 张兴丽, 陶国柱, 叶东. 基于石墨烯强化传热的微小飞行器热控设计[J]. 航天器环境工程, 2022, 39(5): 509-514.
[36] Eric P, David M, Qian W, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters, 2006, 6(1): 96-100.
[37] Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(21): 215502.
[38] Hsieh C T, Lee C E, Chen Y F, et al. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphen nanosheets[J]. Nanoscale, 2015, 7 (44): 18663-18670.
[39] Hwang Y, Kim M, Kim J. Enhancement of thermal and mechanical properties of flexible graphene oxide/carbon nanotube hybrid films though direct covalent bonding[J]. Journal of Materials Science, 2013, 48(20): 7011-7021.
[40] Qin M, Feng Y, Ji T, et al. Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture[J]. Carbon, 2016(104): 157-168.
[41] Zhang J, Shi G, Jiang C, et al. 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader[J]. Small, 2015, 11(46): 6197-6204.
[42] Park J, Prakash V. Thermal transport in 3D pillared SWCNT-graphene nanostructures[J]. Journal of Materials Research, 2013, 28(7): 940-951.
[43] Xiong K, Ma C, Wang J T, et al. Highly thermal conductive graphene/carbon nanotubes films with controllable thickness as thermal management materials[J]. Ceramics International, 2023(49): 8847-8855.
[44] 刘宇, 刘勇, 左春艳, 等 . 石墨烯在航天领域的应用进展[J]. 宇航材料工艺, 2017(4): 1-7.
[45] Jia H, Kong Q Q, Yang X, et al. Dual-functional graphene/carbon nanotubes thick film: Bidirectional thermal dissipation and electromagnetic shielding[J]. Carbon, 2021(171): 329-340.
[46] Kong Q, Liu Z, Gao J, et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J]. Advanced Functional Materials, 2014(24): 4222-4228.
[47] 张伦, 徐雨, 张爱民, 等 . 石墨烯在空天推进和动力领域的应用[J]. 固体火箭技术, 2022, 45(1): 50-60.
[48] 唐晨龙 . 飞行器相变复合材料的石墨烯改性及传热机理研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[49] Gao S Y, Ding J, Wang W L, et al. Carbon foam/reduced graphene oxide/paraffin composite phase change material for electromagnetic interference shielding and thermal management[J]. Journal of Energy Storage, 2023(58): 106355.
[50] Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable & Sustainable Energy Reviews, 2010, 14(2): 615-628.
[51] Sharma S D, Kazunobu S. Latent heat storage materials and systems: A review[J]. International Journal of Green Energy, 2005, 2(1): 1-56.
[52] Ledegza G, Dhar S, Salgado A, et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries[J]. Journal of Power Sources, 2014, 248(7): 37-43.
[53] Liang G Y, Zhang J W, An S H, et al. Phase change material filled hybrid 2D/3D graphene structure with ultra-high thermal effusivity for effective thermal management[J]. Carbon, 2021(176): 11-20.
[54] Zhang Z, Xie R, Bui C, et al. Thermal transport in suspended and supported few-layer graphene[J]. Nano Letters, 2011(11): 113-118.
[55] Wang J, Shi L, Li Y, et al. Thermal management of graphene-induced high-power semiconductor laser package with bidirectional conduction structure[J]. Optics and Laser Technology, 2021(139): 106927.
[56] Feng C P, Chen L B, Tian G L, et al. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics[J].ACS Applied Materials Interfaces, 2019, 11(20): 18739-18745.
[57] Chen S, Wang Q, Zhang M, et al. Scalable production of thick graphene film for next generation thermal management application[J]. Carbon, 2020(167): 270-277.
[58] Zhang Y, Han H, Wang N, et al. Improved heat spreading performance of functionalized graphene in microelectronic device application[J]. Advanced Functional Materials, 2015, 25(28): 4430-4435.
[59] Huang H, Ming X, Wang Y, et al. Polyacrylonitrile-derived thermally conductive graphite film via graphene template effect[J]. Carbon, 2021(180): 197-203.
[60] Kumar P, Shahzad F, Yu S, et al. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness[J]. Carbon, 2015(94): 494-500.
[61] Akbari A, Cunning B V, Joshi S R, et al. Highly ordered and dense thermally conductive graphitic films from a graphene oxide/reduced graphene oxide mixture[J]. Matter, 2020, 2(5): 1198-1206.
[62] Zou R, Liu F, Hu N, et al. Graphene/graphitized polydopamine/carbon nanotube all-carbon ternary composite films with improved mechanical properties and through-plane thermal conductivity[J]. ACS Applied Materials Interfaces, 2020, 12(51): 57391-57400.
[63] Pan T W, Kuo W S, Tai N H, et al. Tailoring anisotropic thermal properties of reduced graphene oxide/multi-walled carbon nanotube hybrid composite films[J]. Composites Science Technology, 2017(151): 44-51.
[64] Li H, Dai S, Miao X, et al. Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel "molecular welding" strategy[J]. Carbon, 2018(126): 319-327.
[65] Yang F, Song Y, Li Y, et al. Anisotropic graphene films with improved thermal conductivity and flexibility for efficient thermal management[J]. Ceramics International, 2023, 49(14): 23844-23850.
[66] Han L, Li K, Fu Y, et al. Multifunctional electromagnetic interference shielding 3D reduced graphene oxide/ver tical edge-rich graphene/epoxy nanocomposites with remarkable thermal management performance[J]. Composites Science and Technology, 2022(222): 109407.
[67] Li X, Alam M M, Miao J, et al. Enhanced through-plane thermal conductivity in polymer nanocomposites by constructing graphene-supported BN nanotubes[J].Journal of Materials Chemistry C, 2020(8): 9569-9575.
[68] Dai W, Lv L, Lu J, et al. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods[J]. ACS Nano, 2019, 13(2): 1547-1554.
[69] Nan B, Wu K, Qu Z, et al. A multifunctional thermal management paper based on functionalized graphene oxide nanosheets decorated with nanodiamond[J]. Carbon, 2020(161): 132-145.
[70] Ma M, Xu L, Qiao L, et al. Nanofibrillated cellulose/MgO@rGO composite films with highly anisotropic thermal conductivity and electrical insulation[J]. Chemical Engineering Journal, 2020(392): 123714.