综述

石墨烯材料在热管理领域的应用进展

  • 林少锋 ,
  • 石刚 ,
  • 江大志
展开
  • 1. 国防科技大学国际关系学院,南京 210039
    2. 国防科技大学空天科学学院,长沙 410037
林少锋,讲师,研究方向为纳米复合材料,电子信箱: linsfbgg@163.com

收稿日期: 2023-06-14

  修回日期: 2023-08-14

  网络出版日期: 2023-11-21

Review of graphene materials in the field of thermal management

  • LIN Shaofeng ,
  • SHI Gang ,
  • JIANG Dazhi
Expand
  • 1. School of International Relations, National University of Defense Technology, Nanjing 210039, China
    2. School of Aerospace Sciences, National University of Defense Technology, Changsha 410037, China

Received date: 2023-06-14

  Revised date: 2023-08-14

  Online published: 2023-11-21

摘要

介绍了石墨烯作为高导热材料的研究现状和发展前景,总结了石墨烯材料的制备方法,包括机械剥离法、外延生长法、化学气相沉积法及氧化还原法等;探讨了不同类型石墨烯材料的导热机理,指出石墨烯材料通过声子和电子进行热传导,并以声子导热为主介绍了串联网络热阻模型和导热逾渗模型;归纳了单层或少层石墨烯、石墨烯膜、碳纳米管/石墨烯复合膜及相变高分子/石墨烯复合材料等类型的高导热石墨烯材料在热管理领域的研究和应用进展。

本文引用格式

林少锋 , 石刚 , 江大志 . 石墨烯材料在热管理领域的应用进展[J]. 科技导报, 2023 , 41(21) : 79 -89 . DOI: 10.3981/j.issn.1000-7857.2023.21.008

Abstract

The rapid development of high-speed aircraft, microelectronic devices and other fields puts forward higher requirements for the thermal conductivity of thermal management materials. Graphene with excellent thermal conductivity and electrical conductivity is an ideal new generation of thermal management materials. The research status and development prospect of graphene as a high thermal conductivity material are introduced. Firstly, the preparation methods of graphene materials are summarized, including mechanical peeling, epitaxial growth, chemical vapor deposition and redox. Thermal conductivity mechanisms of different types of graphene materials are discussed. Graphene materials carry out heat conduction through phonons and electrons with phonon heat conduction being the mainstay. The thermal resistance network model and thermal conduction permeability model are discussed. The research progress and application of monolayer or less-layer graphene, graphene film, carbon nanotube/graphene composite film and phase-change polymer/graphene composite materials in the field of thermal management are summarized.

参考文献

[1] 吴大方, 任浩源, 王峰 . 航天飞行器轻质纳米材料高温隔热性能[J]. 航空学报, 2018, 39(4): 148-159.
[2] 孙健, 刘伟强 . 高超声速飞行器前缘疏导式热防护结构的实验研究[J]. 物理学报, 2014, 63(9): 094401-094408.
[3] 汤晓英. 微系统技术发展和应用[J]. 现代雷达, 2016, 38(12): 45-50.
[4] Feng W, Qin M, Feng Y. Toward highly thermally conductive all-carbon composites: Structure control[J]. Carbon, 2016(109): 575-597.
[5] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
[6] Zhang X, Hou L, Ciesielski A, et al. 2D materials beyond graphene for high-performance energy storage applications[J]. Advanced Energy Materials, 2016, 6(23): 1600671.
[7] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[8] Claire B, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. The Journal of Physical Chemistry B, 2004, 108(52): 19912-19916.
[9] Suk J W, Kitt A, Carl W M, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates[J]. ACS Nano, 2011, 5(9): 6916-6924.
[10] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.
[11] Peng L, Xu Z, Liu Z, et al. Ultrahigh thermal conductive yet superflexible graphene films[J]. Advanced Materials, 2017, 29(27): 1700589.
[12] Liu J, Liu Y F, Zhang H B, et al. Superelastic and multifunctional graphene-based aerogels by interfacial reinforcement with graphitized carbon at high temperatures[J]. Carbon, 2018(132): 95-103.
[13] Shen B, Zhai W T, Zheng W G. Ultrathin flexible fraphene film: An excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials, 2014, 24(28): 4542-4548.
[14] 段文晖, 张刚 . 纳米材料热传导[M]. 北京: 科学出版社, 2017.
[15] Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8): 569-581.
[16] Wei L, Yan H, Jia P, et al. Effects of stone-wales defects on the thermal conductivity of carbon nanotubes[J]. Journal of Heat Transfer, 2012, 134(9): 092401.
[17] Dong Y, Fei M, Sun Y, et al. Influence of typical defects on thermal conductivity of graphene nanoribbons: An equilibrium molecular dynamics simulation[J]. Applied Surface Science, 2012, 258(24): 9926-9931.
[18] Feng T L, Ruan X L, Ye Z Q, et al. Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration[J]. Physical Review B, 2015, 91(22): 224301.
[19] Liu D, Ping Y, Yuan X, et al. The defect location effect on thermal conductivity of graphene nanoribbons based on molecular dynamics[J]. Physics Letters A, 2015, 379(9): 810-814.
[20] Yue S Y, Ouyang T, Hu M. Diameter dependence of lattice thermal conductivity of single-walled carbon nanotubes: Study from ab initio[J]. Scientific Reports, 2015(5): 15440.
[21] Sonvane Y, Gupta S K, Raval P, et al. Length, width and roughness dependent thermal conductivity of graphene nanoribbons[J]. Chemical Physics Letters, 2015(634): 16-19.
[22] Suchismita G, Wenzhong B, Nika D L, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature Materials, 2010, 9(7): 555-558.
[23] 王兰喜, 何延春, 王虎, 等 . 石墨烯导热纸研究进展[J].材料导报, 2023, 3(37): 20110183.
[24] 叶星柯, 文琴龙, 索军营, 等 . 高导热石墨烯膜制备与研究进展[C]. 南昌: 第十届中国航空学会青年科技论坛文集, 2022: 299-306.
[25] Shi J, Dong Y, Fisher T, et al. Thermal transport across carbon nanotube-graphene covalent and van der Waals junctions[J]. Journal of Applied Physics, 2015, 118(4): 04430201-04430208.
[26] Varshney V, Patnaik S S, Roy A K, et al. Modeling of thermal transport in pillared-graphene architectures[J]. ACS Nano, 2010, 4(2): 1153-1161.
[27] Tan X, Yuan Q, Qiu M, et al. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: A mini review[J]. Journal of Materials Science & Technology, 2022(117): 238-250.
[28] Shahil K M F, Baladin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters, 2012, 12(2): 861-867.
[29] Mahanta N K, Abramson A R. Thermal conductivity of graphene and graphene oxide nanoplatelets[C]. 13th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2012.
[30] Gao Z, Yong Z, Fu Y, et al. Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots[J]. Carbon, 2013, 61(5): 342-348.
[31] Xiang J, Drzal L T. Thermal conductivity of exfoliated graphite nanoplatelet paper[J]. Carbon, 2011, 49(3): 773-778.
[32] Song N J, Chen C M, Lu C X, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders[J]. Journal of Materials Chemistry A, 2014, 2(39): 16563-16568.
[33] Huang S Y, Zhao B, Zhang K, et al. Enhanced reduction of graphene oxide on recyclable Cu foils to fabricate graphene films with superior thermal conductivity[J]. Scientific Reports, 2015, 5(1): 14260.
[34] Xin G, Sun H, Hu T, et al. Large-area freestanding graphene paper for superior thermal management[J]. Advanced Materials, 2014, 26(26): 4521-4526.
[35] 张兴丽, 陶国柱, 叶东. 基于石墨烯强化传热的微小飞行器热控设计[J]. 航天器环境工程, 2022, 39(5): 509-514.
[36] Eric P, David M, Qian W, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters, 2006, 6(1): 96-100.
[37] Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(21): 215502.
[38] Hsieh C T, Lee C E, Chen Y F, et al. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphen nanosheets[J]. Nanoscale, 2015, 7 (44): 18663-18670.
[39] Hwang Y, Kim M, Kim J. Enhancement of thermal and mechanical properties of flexible graphene oxide/carbon nanotube hybrid films though direct covalent bonding[J]. Journal of Materials Science, 2013, 48(20): 7011-7021.
[40] Qin M, Feng Y, Ji T, et al. Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture[J]. Carbon, 2016(104): 157-168.
[41] Zhang J, Shi G, Jiang C, et al. 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader[J]. Small, 2015, 11(46): 6197-6204.
[42] Park J, Prakash V. Thermal transport in 3D pillared SWCNT-graphene nanostructures[J]. Journal of Materials Research, 2013, 28(7): 940-951.
[43] Xiong K, Ma C, Wang J T, et al. Highly thermal conductive graphene/carbon nanotubes films with controllable thickness as thermal management materials[J]. Ceramics International, 2023(49): 8847-8855.
[44] 刘宇, 刘勇, 左春艳, 等 . 石墨烯在航天领域的应用进展[J]. 宇航材料工艺, 2017(4): 1-7.
[45] Jia H, Kong Q Q, Yang X, et al. Dual-functional graphene/carbon nanotubes thick film: Bidirectional thermal dissipation and electromagnetic shielding[J]. Carbon, 2021(171): 329-340.
[46] Kong Q, Liu Z, Gao J, et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J]. Advanced Functional Materials, 2014(24): 4222-4228.
[47] 张伦, 徐雨, 张爱民, 等 . 石墨烯在空天推进和动力领域的应用[J]. 固体火箭技术, 2022, 45(1): 50-60.
[48] 唐晨龙 . 飞行器相变复合材料的石墨烯改性及传热机理研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[49] Gao S Y, Ding J, Wang W L, et al. Carbon foam/reduced graphene oxide/paraffin composite phase change material for electromagnetic interference shielding and thermal management[J]. Journal of Energy Storage, 2023(58): 106355.
[50] Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable & Sustainable Energy Reviews, 2010, 14(2): 615-628.
[51] Sharma S D, Kazunobu S. Latent heat storage materials and systems: A review[J]. International Journal of Green Energy, 2005, 2(1): 1-56.
[52] Ledegza G, Dhar S, Salgado A, et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries[J]. Journal of Power Sources, 2014, 248(7): 37-43.
[53] Liang G Y, Zhang J W, An S H, et al. Phase change material filled hybrid 2D/3D graphene structure with ultra-high thermal effusivity for effective thermal management[J]. Carbon, 2021(176): 11-20.
[54] Zhang Z, Xie R, Bui C, et al. Thermal transport in suspended and supported few-layer graphene[J]. Nano Letters, 2011(11): 113-118.
[55] Wang J, Shi L, Li Y, et al. Thermal management of graphene-induced high-power semiconductor laser package with bidirectional conduction structure[J]. Optics and Laser Technology, 2021(139): 106927.
[56] Feng C P, Chen L B, Tian G L, et al. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics[J].ACS Applied Materials Interfaces, 2019, 11(20): 18739-18745.
[57] Chen S, Wang Q, Zhang M, et al. Scalable production of thick graphene film for next generation thermal management application[J]. Carbon, 2020(167): 270-277.
[58] Zhang Y, Han H, Wang N, et al. Improved heat spreading performance of functionalized graphene in microelectronic device application[J]. Advanced Functional Materials, 2015, 25(28): 4430-4435.
[59] Huang H, Ming X, Wang Y, et al. Polyacrylonitrile-derived thermally conductive graphite film via graphene template effect[J]. Carbon, 2021(180): 197-203.
[60] Kumar P, Shahzad F, Yu S, et al. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness[J]. Carbon, 2015(94): 494-500.
[61] Akbari A, Cunning B V, Joshi S R, et al. Highly ordered and dense thermally conductive graphitic films from a graphene oxide/reduced graphene oxide mixture[J]. Matter, 2020, 2(5): 1198-1206.
[62] Zou R, Liu F, Hu N, et al. Graphene/graphitized polydopamine/carbon nanotube all-carbon ternary composite films with improved mechanical properties and through-plane thermal conductivity[J]. ACS Applied Materials Interfaces, 2020, 12(51): 57391-57400.
[63] Pan T W, Kuo W S, Tai N H, et al. Tailoring anisotropic thermal properties of reduced graphene oxide/multi-walled carbon nanotube hybrid composite films[J]. Composites Science Technology, 2017(151): 44-51.
[64] Li H, Dai S, Miao X, et al. Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel "molecular welding" strategy[J]. Carbon, 2018(126): 319-327.
[65] Yang F, Song Y, Li Y, et al. Anisotropic graphene films with improved thermal conductivity and flexibility for efficient thermal management[J]. Ceramics International, 2023, 49(14): 23844-23850.
[66] Han L, Li K, Fu Y, et al. Multifunctional electromagnetic interference shielding 3D reduced graphene oxide/ver tical edge-rich graphene/epoxy nanocomposites with remarkable thermal management performance[J]. Composites Science and Technology, 2022(222): 109407.
[67] Li X, Alam M M, Miao J, et al. Enhanced through-plane thermal conductivity in polymer nanocomposites by constructing graphene-supported BN nanotubes[J].Journal of Materials Chemistry C, 2020(8): 9569-9575.
[68] Dai W, Lv L, Lu J, et al. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods[J]. ACS Nano, 2019, 13(2): 1547-1554.
[69] Nan B, Wu K, Qu Z, et al. A multifunctional thermal management paper based on functionalized graphene oxide nanosheets decorated with nanodiamond[J]. Carbon, 2020(161): 132-145.
[70] Ma M, Xu L, Qiao L, et al. Nanofibrillated cellulose/MgO@rGO composite films with highly anisotropic thermal conductivity and electrical insulation[J]. Chemical Engineering Journal, 2020(392): 123714.
文章导航

/