Extracorporeal membrane oxygenation (ECMO) is an effective extracorporeal life support measure that played a crucial role in the treatment of critically patients with COVID-19. However, its core component, oxygenation membrane for ECMO, has been monopolized by foreign countries for a long time. This study used the Incopat and retrieved form it the patents in the field of oxygenated membranes for ECMO worldwide, which were then analyzied as the original data to disclose the trend and trajectory of technology development, the layout of global market and technology from the perspective of patents. The result shows that COVID-19 has stimulated the development of technology. China becomes the world's third largest source and distribution of patent applications in the field as well as an important target market, but its high-value patents account for a small proportion. Except for a few patents related to membrane preparation and its device, membrane modification, and membrane module, most of the Chinese patents involve the optimal design of oxygenator and related auxiliary technologies, and most of them are utility model patents. The preparation method and optimization process of hollow fiber membrane for ECMO, new polymer materials, membrane modification and composite membrane research are the current hot research topics. Recently Chinese patents reported the preparation technology of PMP hollow fiber membranes for ECMO and related devices, which are expected to achieve a breakthrough in the preparation technology of high-performance PMP hollow fiber membranes. Innovations can be made for the existing defects of polymer material synthesis technology and membrane preparation technology. Meanwhile, it is necessary to increase the research of biocompatibility modification technology and find new materials with better performance to achieve technological breakthrough. Promoting the localization of oxygenation membranes for ECMO will help the localization of ECMO systems.
[1] 侯晓彤. 让体外生命支持在抗击新型冠状病毒肺炎的战役中发挥作用[J]. 中国体外循环杂志, 2020, 18(2): 65-66.
[2] 李全正, 阮昕华, 杨志祥 . 体外膜氧合在新型冠状病毒肺炎患者中的应用[J]. 中国体外循环杂志, 2021, 19(5): 308-312.
[3] 新型冠状病毒肺炎体外膜肺氧合支持治疗专家组. 新型冠状病毒肺炎体外膜肺氧合支持治疗专家共识[J]. 中华急诊医学杂志, 2020, 29(3): 314-319.
[4] Hong X, Xiong J, Feng Z, et al. Extracorporeal membrane oxygenation (ECMO): Does it have a role in the treatment of severe COVID-19[J]. International Journal of Infectious Diseases, 2020, 94: 78-80.
[5] White A, Fan E. What is ECMO[J]. American Journal of Respiratory and Critical Care Medicine, 2016, 193(6): 9-10.
[6] Makdisi G, Wang I W. Extra corporeal membrane oxygenation (ECMO) review of a lifesaving technology[J]. Journal of Thoracic Disease, 2015, 7(7): E166-176.
[7] Firstenberg M S, Stahel P F, Hanna J, et al. Successful COVID-19 rescue therapy by extra-corporeal membrane oxygenation (ECMO) for respiratory failure: A case report[J]. Patient Safety in Surgery, 2020, 14(1): 1-7.
[8] Chaves R C F, Rabello R, Timenetsky K T, et al. Extracorporeal membrane oxygenation: A literature review[J]. Revista Brasileira de Terapia Intensiva, 2019, 31: 410-424.
[9] 魏巍, 杨阳, 李治非, 等. 我国高端应急医疗设备研发现状与展望[J]. 中国医学装备, 2021, 18(11): 183-187.
[10] Extracorporeal Life Support Organization. ELSO live registry dashboard of ECMO patient data[EB/OL]. (2023-09-27) [2023-09-27]. https://www. elso. org/Registry/ELSOLiveRegistryDashboard.aspx.
[11] Extracorporeal Life Support Organization. Extracorporeal membrane oxygenation (ECMO) in COVID-19[EB/OL]. (2023-09-27)[2023-09-27]. https://www. elso. org/covid-19.aspx.
[12] 中国生物医学工程学会体外循环分会. 2017与2018年中国心外科手术和体外循环数据白皮书[J]. 中国体外循环杂志, 2019, 17(5): 257-260.
[13] 中国生物医学工程学会体外循环分会 . 2019年中国心外科手术和体外循环数据白皮书[J]. 中国体外循环杂志, 2020, 18(4): 193-196.
[14] 郝星, 黑飞龙, 侯晓彤. 2020年中国心外科手术和体外循环数据白皮书[J]. 中国体外循环杂志, 2021, 19(5): 257-260.
[15] 中国生物医学工程学会体外循环分会, 赵举, 黑飞龙,等. 2021年中国心外科手术和体外循环数据白皮书[J]. 中国体外循环杂志, 2022, 20(4): 196-199.
[16] 郝星 . 2022年中国心血管外科手术和体外循环数据白皮书[J]. 中国体外循环杂志, 2023, 21(4): 197-200.
[17] 中国工程院化工、冶金与材料工程学部, 中国材料研究学会 . 中国新材料产业发展报告(2020)[M]. 北京: 化学工业出版社, 2020: 29-47.
[18] 杜宇倩, 邵丽萍, 潘福生, 等 . 聚-4-甲基-1-戊烯中空纤维氧合膜的研究进展与面临的挑战[J]. 膜科学与技术, 2021, 41(3): 169-178.
[19] 铁娟, 张彩丽, 翁云宣. 体外膜氧合系统中膜材料的研究进展[J]. 膜科学与技术, 2020, 40(6): 141-147.
[20] 杜宇倩, 邵丽萍, 潘福生, 等 . 聚-4-甲基-1-戊烯中空纤维氧合膜的研究进展与面临的挑战[J]. 膜科学与技术, 2021, 41(3): 169-178.
[21] 王朔, 张军 . 基于专利分析的国内制氢技术发展态势研究[J]. 世界科技研究与发展, 2018, 40(1): 50-60.
[22] 杜若鹏, 寇远涛, 朱亮. 基于计量分析的中国番茄发明专利技术发展趋势研究[J]. 中国蔬菜, 2021(12): 11-16.
[23] 郭婕婷, 肖国华 . 专利分析方法研究[J]. 情报杂志, 2008(1): 12-14+11.
[24] IncoPat 全球专利数据库[EB/OL]. (2022-01-24) [2022-01-24]. https://www.incopat.com.
[25] 张婷, 陈娟, 卢岩, 等 . 基于发明专利的体外膜肺氧合技术创新态势研究[J]. 中国医疗设备, 2020, 35(6): 133-138+157.
[26] Clowes G H A, Hopkins A L, Neville W E. An artificial lung dependent upon diffusion of oxygen and carbon dioxide through plastic membranes[J]. Journal of Thoracic Surgery, 1956, 32(5): 630-637.
[27] Evseev A K, Zhuravel S V, Alentiev A Y, et al. Membranes in extracorporeal blood oxygenation technology[J]. Membranes and Membrane Technologies, 2019, 1(4): 201-211.
[28] Lim M W. The history of extracorporeal oxygenators[J]. Anaesthesia, 2006, 61(10): 984-995.
[29] 吕权 . 平板式聚砜膜的制备、表征、改性及其在膜式人工肺中的应用[D]. 南京: 南京大学化学化工学院, 2013.
[30] 黄鑫 . 热致相分离法制备聚 4-甲基-1-戊烯中空纤维膜及其表面血液相容性改性[D]. 南京: 南京大学化学化工学院, 2016.
[31] 李雅坤, 黑飞龙 . 膜式人工肺中空纤维膜材料的改善及发展新方向[J]. 中国组织工程研究, 2022, 26(16): 2608-2612.
[32] 王风婷, 罗峰 . 膜式氧合器中膜材料的研究进展[J]. 中国组织工程研究, 2008, 12(10): 1927-1930.
[33] 段亚峰, 潘峰 . 膜式氧合器用聚丙烯中空纤维膜超微结构[J]. 纺织学报, 2005, 26(3): 29-31+37.
[34] 倪阳 . PMP 中空纤维膜制备及结构与性能研究[D]. 杭州: 浙江大学高分子系, 2011.
[35] 安亚欣, 李凭力, 吴浩赟, 等 . 热致相分离法制备聚偏氟乙烯中空纤维微孔膜[J]. 膜科学与技术, 2013, 33(6): 13-19.
[36] Kawahito S, Motomura T, Glueck J, et al. Development of a new hollow fiber silicone membrane oxygenator for ECMO: The recent progress[J]. Annals of Thoracic and Cardiovascular Surgery, 2002, 8(5): 268-274.
[37] 向伟, 马兰, 刘佳杰, 等 . 基于 IncoPat专利分析的苎麻机械化生产研发态势[J]. 中国农业科技导报, 2021, 23(1): 107-118.
[38] 王满生, 王延周, 邓欣, 等. 基于Innography专利数据库平台的青贮加工技术态势分析[J]. 粮食与饲料工业, 2017(8): 34-39.
[39] 余丽, 盛莹婕, 许景龙, 等 . 专利分析视角下我国集成电路产业"卡脖子"问题研究[J]. 数据与计算发展前沿, 2021, 3(5): 40-54.
[40] 许景龙, 吕璐成, 赵亚娟. 面向专利分析流程的专利情报分析工具功能比较研究[J]. 情报理论与实践, 2020, 43(8): 178-185+151.
[41] Roslan R A, Lau W J, Zulhairun A K, et al. Improving CO2/CH4 and O2/N2 separation by using surface-modified polysulfone hollow fiber membranes[J]. Journal of Polymer Research, 2020, 27(5): 1-14.
[42] Kniazeva T, Hsiao J C, Charest J L, et al. A microfluidic respiratory assist device with high gas permeance for artificial lung applications[J]. Biomedical Microdevices, 2011, 13(2): 315-323.