综述

基于双源复合声波的煤温感知技术展望

  • 郭军 ,
  • 昝若怡 ,
  • 文虎 ,
  • 王凯旋 ,
  • 金永飞
展开
  • 1. 西安科技大学安全科学与工程学院,西安 710054
    2. 西部矿井开采及灾害防治教育部重点实验室,西安 710054
    3. 国家矿山应急救援(西安)研究中心,西安 710054
郭军,副教授,研究方向为煤火灾害防控、应急救援等,电子信箱:guojun@xust.edu.cn

收稿日期: 2022-07-20

  修回日期: 2022-12-20

  网络出版日期: 2023-12-15

基金资助

国家自然科学基金青年项目(52004209); 国家自然科学基金项目(52174198,51974240)

Perspectives on a new technology for coal temperature sensing based on dual-source composite acoustic waves

  • GUO Jun ,
  • ZAN Ruoyi ,
  • WEN Hu ,
  • WANG Kaixuan ,
  • JIN Yongfei
Expand
  • 1. School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
    2. Key Laboratory of Western Mine Mining and Disaster Prevention and Control, Ministry of Education, Xi'an 710054, China
    3. National Mine Emergency Rescue (Xi'an) Research Center, Xi'an 710054, China

Received date: 2022-07-20

  Revised date: 2022-12-20

  Online published: 2023-12-15

摘要

煤矿采空区复杂环境受限空间煤温的快速精准量化识别是世界性难题。针对现有煤火探测技术存在的局限,归纳了煤火探测技术的研究现状,并指出目前较为主流的采空区松散煤体隐蔽高温点测量方式可分为接触式测温与非接触式测温2类;梳理了声学测温技术的研究现状,分析了声波的温敏特性及声波的传播特性,总结了燃烧音的研究现状,分析了燃烧音是如何产生的、不同条件下的燃烧音频率,以及基于燃烧音识别的火灾探测技术;通过研究不同频率外加声波在升温松散煤体中的传播特性,掌握不同实验条件对外加声波与燃烧音“双源”复合声波传播规律的影响,提出了构建一个新型的煤温感知技术的构想。

本文引用格式

郭军 , 昝若怡 , 文虎 , 王凯旋 , 金永飞 . 基于双源复合声波的煤温感知技术展望[J]. 科技导报, 2023 , 41(22) : 83 -90 . DOI: 10.3981/j.issn.1000-7857.2023.22.011

Abstract

The rapid and accurate quantification of coal temperature in restricted spaces in complex coal mining areas has always been a worldwide problem. In view of the limitations of the existing coal fire detection technology, the current research status of coal fire detection technology is summarized, and it is pointed out that the current mainstream measurement methods of hidden high temperature points in loose coal bodies in mining areas can be divided into two categories: contact temperature measurement and non-contact temperature measurement; the current research status of acoustic temperature measurement technology is reviewed, the temperature-sensitive characteristics of acoustic waves and the propagation characteristics of acoustic waves are analyzed, the current research status of combustion sound is summarized, and combustion sound generation mechanism, combustion sound frequency under different conditions and the fire detection technology based on combustion sound identification are analyzed. The concept of a new coal temperature sensing technology is put forward by studying the propagation characteristics of applied sound waves with different frequencies in heating loose coal, grasping the influence of different experimental conditions on the propagation law of "dual source" composite sound waves of external acoustic wave and combustion sound.

参考文献

[1] 王德明. 煤矿热动力灾害及特性[J]. 煤炭学报, 2018, 43(1): 137-142.
[2] 秦波涛, 张雷林, 王德明, 等. 采空区煤自燃引爆瓦斯的机理及控制技术[J]. 煤炭学报, 2009, 34(12): 1655-1659.
[3] 李林, 陈军朝, 姜德义, 等. 煤自燃全过程高温区域及指标气体时空变化实验研究[J]. 煤炭学报, 2016, 41(2):444-450.
[4] 金永飞, 郭军, 文虎, 等. 煤自燃高温贫氧氧化燃烧特性参数的实验研究[J]. 煤炭学报, 2015, 40(3): 596-602.
[5] Yan H, Chen G N, Zhou Y G, et al. Primary study of temperature distribution measurement in stored grain based on acoustic tomography[J]. Experimental Thermal and Flu⁃id Science, 2012, 42: 55-63.
[6] 安连锁, 冯强, 沈国清, 等. 电站锅炉管阵列内声传播特性及时延值测量[J]. 动力工程学报, 2017, 37(1): 13-20.
[7] 程晓舫, 王瑞芳, 张维农, 等 . 火灾探测的原理和方法(上)[J]. 中国安全科学学报, 1999(1): 27-32.
[8] 束学来, 郑炳旭, 郭子如, 等. 测温方法的比较及其在煤矿火区爆破中的运用[C]//中国矿业科技文汇—2014, 2014: 449-451.
[9] 徐静, 贺红平, 王栋 . 膨胀式温度计(玻璃棒)分类及误差来源浅析[J]. 城市建设理论研究(电子版), 2017, doi: 10.19569/j.cnki.cn119313/tu.201711236.
[10] 崔晓荣, 林谋金, 束学来. 露天煤矿火区爆破高温孔温度测量与分析[J]. 煤炭技术, 2015, 34(11): 303-305.
[11] 许建朝 . 谈谈热电偶温度计[J]. 益阳师专学报, 1996(6): 113-115.
[12] Guo J, Wen H, Zheng X Z, et al. A method for evaluating the spontaneous combustion of coal by monitoring various gases[J]. Process Safety and Environmental Protection, 2019, 126: 223-231.
[13] Zhang Y T, Shix Q, Li Y Q, et al. Characteristics of carbon monoxide production and oxidation kinetics during the decaying process of coal spontaneous combustion[J]. The Canadian Journal of Chemical Enginering, 2018, 96(8): 17524761.
[14] Liang Y, Zhang J, Wang L, et al. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review[J]. Journal of Loss Prevention in the Process Industries, 2019, 57: 208-222.
[15] Zhou B, Wu J, Wang J. Surface-based radon detection to identify spontaneous combustion areas in small aban⁃
doned coal mine gobs: Case study of a small coal mine in China[J]. Process Safety and Environmental Protection, 2018, 119: 223-232.
[16] 文虎, 程小蛟, 许延辉, 等 . 松散煤体自然发火过程氡析出及运移规律[J]. 煤炭学报, 2019, 44(9): 2816-2823.
[17] 郭军, 李帅, 蔡国斌, 等 . 采空区隐蔽火源探测及声学法煤温感知新技术探讨[J]. 中国安全生产科学技术, 2021, 17(6): 5-11.
[18] Chen C, Yang K, Duan R, et al. Acoustic propagation analysis with a sound speed feature model in the front area of Kuroshio Extension[J]. Applied Ocean Research, 2017, 68: 1-10.
[19] Katherine F W, Shane L, Karim G S, et al. Monitoring deep-ocean temperatures using acoustic ambient noise[J]. Geophysical Research Letters, 2015, 42(8): 2878-2884.
[20] Zhang S P, Shen G Q, An L S. Online monitoring of furnace exit gas temperature in power plants[J]. Applied Thermal Engineering, 2019, 147: 917-926.
[21] 东桥, 郭敏 . 基于萤火虫算法的温度场重建[J]. 计算机工程与科学, 2018, 40(1): 159-164.
[22] Liu X, Cai X, Guo Q, et al. Study of acoustic wave propagation in micro- and nanochannels[J]. Wave Motion, 2018, 76: 51-60.
[23] 白利平, 杜建国, 刘巍, 等 . 高温高压下辉长岩纵波速度和电导率实验研究[J]. 中国科学(D 辑:地球科学), 2002(11): 959-968.
[24] 周莉, 李德建, 王春光 . 温度对深部砂岩波速的影响[J]. 黑龙江科技学院学报, 2007, 17(3): 178-180.
[25] Yuki M, Masahiro I, Masaru T, et al. Simultaneous measurements of compressional wave and shear wave velocities, Poisson's ratio, and Vp/Vs under deep crustal pressure and temperature conditions: Example of silicified pelitic schist from Ryoke Belt, Southwest Japan[J]. Island Arc, 2010, 19(1): 30-39.
[26] 房春慧, 李继龙, 姜纪沂, 等 . 压力和温度对致密砂岩纵波速度影响的实验研究[J]. 地球物理学进展, 2020, 35(5): 1770-1776.
[27] 汤红伟, 程建远, 王世东. 深层煤矿床的煤岩样物性测试结果与分析[J]. 中国煤炭, 2009, 35(9): 75-78+81.
[28] 李盟 . 煤体超声波速度影响因素的实验研究[D]. 郑州:河南理工大学, 2014.
[29] Komijani M, Gracie R, Sarvaramini E. Simulation of induced acoustic emission in fractured porous media[J]. Engineering Fracture Mechanics, 2019, 210: 113-131.
[30] Cassiede M, Shaw J M. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors[J]. Review of Scientific Instruments, 2015, 86(4): 0449021-04490213.
[31] 郭淼, 胡永辉, 闫勇, 等 . 基于互相关的堆积物料中声波传播时间测量[J]. 电子测量与仪器学报, 2018, 32(12): 1-9.
[32] Guo M, Yan Y, Hu Y H. Temperature measurement of stored biomass using low- frequency acoustic waves and correlation signal processing techniques[J]. Fuel, 2018, 227: 89-98.
[33] 朱军, 祝捍皓, 屈科, 等 . 声速分布对浅海低频声场空间相关的影响研究[J]. 声学技术, 2019, 38(4): 376-381.
[34] Liszka L. Long-distance propagation of infrasound from artificial sources,Journ[J]. Acoustical Society of America, 1974, 56(5): 23-29.
[35] Liszka L. Cognitive information processing in space physics and astrophysics[M]. Tucson: Pachart Publishing House, 2003.
[36] 范恒. 声发射监测技术运用于火灾探测初探[J]. 中国公共安全(学术版), 2009(Z1): 108-111.
[37] 荣建忠, 姚卫, 高伟, 等 . 基于多特征融合技术的火焰视频探测方法[J]. 燃烧科学与技术, 2013, 19(3): 227-233.
[38] 蒋静学 . 基于燃烧音识别的火灾探测系统的研究与设计[D]. 上海: 东华大学, 2012.
[39] 蒋静学, 官洪运, 范泳文, 等 . 时频分析方法在燃烧音频信号分析中的应用研究[J]. 现代电子技术,2011, 34(23): 67-69.
[40] 林运通, 谢献强, 黄平, 等 . 输电线路沿线林火监测技术综述[J]. 林业与环境科学, 2019, 35(5): 122-126.
[41] 王瑞芳, 程晓舫 . 燃烧音火灾探测器[J]. 国际消防, 1997(8): 34-37.
[42] Guan H Y, Fang S, Jiang J X. The detection and analysis of the combustion audio[C]. Proceedings of the 2nd International Conference on Science and Social Research (ICSSR 2013), Beijing: Atlantis Press, 2013.
文章导航

/