[1] 中国电力企业联合会.中国电力行业年度发展报告2018版[M].北京:中国市场出版社, 2018.
[2] 彭浩,张晓云.我国氮氧化物治理技术的现状和研究进展[J].广东化工, 2009, 36(12):83-85.
[3] 刘恩丽,张强,陈伟堂.我国燃煤电厂超低排放常见问题与建议[J].广东化工, 2021, 48(10):159-160.
[4] 李国亮.氮氧化物对环境的危害及污染控制技术[J].山西化工, 2019, 39(05):123-124.
[5] Liang Z, Ma X, Hai L, et al. The energy consumption and environmental impacts of SCR technology in China[J]. Applied Energy, 2011, 88(4):1120-1129.
[6] Hu Y, Griffiths K, Norton P R. Surface science studies of selective catalytic reduction of NO:Progress in the last ten years[J]. Surface Science, 2009, 603(10-12):1740-1750.
[7] 曾瑞.浅谈SCR废催化剂的回收再利用[J].中国环保产业, 2013(2):39-42.
[8] Nakajima F, Hamada I. The state-of-the-art technology of NOx control[J]. Catalysis Today, 1996, 29(1/4):109-115.
[9] 滕玉婷.废弃SCR脱硝催化剂资源化成分回收[D].南京:东南大学, 2020.
[10] 张立,陈崇明,王平. SCR脱硝催化剂的再生与回收[J].电站辅机, 2012, 33(3):27-30.
[11] 袁一帆,官贞珍.金属氧化物脱硝催化剂钾、钠中毒及抗中毒研究进展[J].广东化工, 2021, 48(12):75-77.
[12] 袁玲,邱兆富,杨骥,等. SCR催化剂碱(土)金属中毒及其改性再生研究进展[J].环境工程, 2018, 36(4):117-121.
[13] Wang J Z, Du H, Olayiwola, et al. Recent advances in the recovery of transition metals from spent hydrodesulfurization catalysts[J]. Tungsten, 2021, 3(3):305-328.
[14] 朱媛霏,李海霞,田丽艳,等.废弃SCR催化剂氧化酸洗除As工艺及机理研究[J].现代化工, 2023, 43(2):209-214.
[15] Qi C P, Bao W J, Wang L G, et al. Study of the V2O5-WO3/TiO2 catalyst synthesized from waste catalyst on selective catalytic reduction of NOx by NH3[J]. Catalysts,2017, 7(12):110.
[16] 武文粉,包炜军,李会泉,等. V2O5-WO3/TiO2烟气脱硝催化剂失活前后元素的赋存特征[J].过程工程学报,2016, 16(5):794-801.
[17] 武文粉.废脱硝催化剂回收钒钨及载体循环利用过程基础研究[D].北京:中国科学院大学(中国科学院过程工程研究所), 2020.
[18] 竹涛,张星,高放,等.废弃SCR催化剂再生研究进展[J].环境工程, 2018, 36(10):92-96.
[19] Cheng H I, Zehra T, Lim L B L, et al. Sorption characteristics of peat of Brunei DarussalamⅣ:Equilibrium,thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueoussolution[J].Environmental Earth Sciences, 2014, 72(7):2263-2277.
[20] 汪波.废弃脱硝催化剂的处置[J].中国环保产业, 2015(12):53-56.
[21] 张春平,秦川,杨岗,等.失活SCR脱硝催化剂处理技术进展[J].华电技术, 2020, 42(1):8-14.
[22] 戴泽军.废弃SCR催化剂重金属浸出特性及其无害化处理研究[D].武汉:华中科技大学, 2018.
[23] 王祺.化工危险废物焚烧及烟气处理工艺研究[J].化工设计通讯, 2022, 48(6):188-190.
[24] 薛琦.危险废物焚烧处置技术的分析[J].化工管理,2022(2):44-46.
[25] 王乐乐.废弃SCR催化剂中重金属钒、砷的迁移特性及无害化处置研究[D].武汉:华中科技大学, 2019.
[26] Daniel L, Camilla M, Mikko H. Thermal treatment of solid residues from WtE units:A review[J]. Waste Management, 2015, 37:82-94.
[27] Dai Z J, Wang L L, Tang H, et al. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst[J]. Chemosphere, 2018, 207:440-448.
[28] 许佳诺.铁矿石堆积床性质正交试验与烧结过程中废弃SCR催化剂的协同处置研究[D].杭州:浙江大学,2020.
[29] Hu H Y, Liu H, Shen W Q, et al. Comparison of CaO's effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China[J].Chemosphere, 2013, 93(4):590-596.
[30] 周昊,许佳诺,周明熙,等.高温熔融处理废弃SCR催化剂过程中的重金属固化研究[J].动力工程学报,2020, 40(6):492-501.
[31] 曹礼梅,王青,张巍,等.典型燃煤电厂废SCR催化剂解析及环境管理思考[J].装备环境工程, 2018, 15(2):45-51.
[32] 罗忠涛,肖宇领,杨久俊,等.垃圾焚烧飞灰有毒重金属固化稳定技术研究综述[J].环境污染与防治, 2012,34(8):58-62.
[33] 李浩,王恒,韩涛,等.采用烧结法降低垃圾焚烧飞灰浸出毒性的研究[J].环境化学, 2007(6):828-831.
[34] Quina M J, Bordado J C, Quinta R M. Treatment and use of air pollution control residues from MSW incineration:An overview[J]. Waste Manage, 2008, 28:2097-2121.
[35] 靳美娟.城市生活垃圾焚烧飞灰水泥固化技术研究[J].环境工程学报, 2016, 10(6):3235-3241.
[36] 王登权,何伟,王强,等.重金属在水泥基材料中的固化和浸出研究进展[J].硅酸盐学报, 2018, 46(5):683-693.
[37] Liu L J, Wang L L, Su S, et al. Leaching behavior of vanadium from spent SCR catalyst and its immobilization in cement-based solidification/stabilization with sulfurizing agent[J]. Fuel, 2019(243):406-412.
[38] He C, Kong F, Bao Q, et al. Cement solidification/stabilization of the toxicants from spent commercial SCR catalyst[J]. Journal of Chemical Technology&Biotechnology, 2020, 96(2):514-520.
[39] 周建国,张曙光,李萍,等.城市生活垃圾焚烧飞灰中重金属的固化/稳定化处理[J].天津城建大学学报,2015, 21(2):109-113.
[40] Bontempi E, Zacco A, Borgese L. A new method for municipal solid waste incinerator(MSWI)fly ash inertization, based on colloidal silica[J]. Journal of Environmental Monitoring, 2010, 12(3):2093-2099.
[41] 王丽媛,俞欣,王苏琴,等.含镍危废药剂稳定化与水泥固化比较分析[[J].黑龙江环境通报, 2015, 39(2):63-66.
[42] 朱子晗,郭燕燕,赵由才,等.垃圾焚烧飞灰中Pb及特征药剂稳定化处理[J].中国环境科学, 2021, 41(6):2737-2743.
[43] Wang L L, Su S, Qing M X, et al. Melting solidification and leaching behaviors of V/As during co-combustion of the spent SCR catalyst with coal[J]. Fuel, 2019, 252:164-171.
[44] 何川,王乐乐,杨晓宁,等.废弃选择性催化还原催化剂混掺对新催化剂脱硝性能的影响[J].化工进展,2018, 37(2):581-586.
[45] Ferella F. A review on management and recycling of spent selective catalytic reduction catalysts[J]. Journal of Cleaner Production, 2020, 246:1-19.
[46] 任真.脱硝废弃催化剂金属氧化物的回收利用[J].华电技术, 2012, 34(12):65-67.
[47] Kim J W, Hwang I J. Separation of valuables from spent selective catalytic reduction catalyst leaching solution by fabricated anion extraction resins[J]. Journal of Environmental Chemical Engineering, 2018, 6(1):1100-1108.
[48] Choi I H, Cho Y C, Moon G, et al. Recent developments in the recycling of spent selective catalytic reduction catalyst in South Korea[J]. Catalysts, 2020, 10:182-201.
[49] 李化全,郭传华.废弃脱硝催化剂中有价元素钛钒钨的综合利用研究[J].无机盐工业, 2014, 46(5):52-54.
[50] 陈颖敏,谢宗,王超凡.燃煤电厂废弃SCR催化剂回收二氧化钛的研究[J].中国电力, 2016, 49(6):151-156.
[51] 张振全,赵备备,李兰杰,等.废SCR脱硝催化剂钒、钛、钨选择性分离研究[J].钢铁钒钛, 2021, 42(1):24-31.
[52] Li P, Luo S H, Wang J. Extraction and separation of Fe and Ti from extracted vanadium residue by enhanced ammonium sulfate leaching and synthesis of LiFePO4/C for lithium-ion batteries[J]. Separation and Purification Technology, 2022, 282:120065.
[53] Zhang Q, Wu Y, Zuo T. Titanium extraction from spent selective catalytic reduction catalysts in a NaOH molten-salt system:Thermodynamic, experimental and kinetic studies[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2019, 50(1):471-479.
[54] 李力成,王磊,赵学娟,等.几种酸在废弃脱硝催化剂中提钒效果的比较[J].中国有色金属学报, 2016, 26(10):2230-2237.
[55] 吴涛,刘显彬,席文昌.从废弃脱硝催化剂进行钛分离中酸解率影响因素研究[J].现代化工, 2018, 38(1):115-117.
[56] 杨睿.失效SCR催化剂中TiO2的回收及再利用技术研究[D].杭州:浙江工业大学, 2015.
[57] 谢宗.燃煤电厂废弃SCR催化剂中回收有价金属的研究[D].北京:华北电力大学, 2016.
[58] Kim J W, Lee W G, Hwang I S, et al. Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching[J]. Journal of Industrial and Engineering Chemistry, 2015, 28:73-77.
[59] Choi I H, Moon G, Lee J Y, et al. Extraction of tungsten and vanadium from spent selective catalytic reduction catalyst for stationary application by pressure leaching process[J]. Journal of Cleaner Production, 2018, 197:163-169.
[60] 侯学军,章小明,程文博,等.废钒钛基SCR催化剂的处置方法研究进展[J].化工进展, 2021, 40(10):5313-5324.
[61] Li M, Du H, Zheng S L, et al. Extraction of vanadium from vanadium slag via non-salt roasting and ammonium oxalate leaching[J]. Journal of the Minerals, Metals&Materials Society, 2017, 69(10):1970-1975.
[62] 滕玉婷,张亚平,王玲,等.干湿法结合工艺回收废弃SCR脱硝催化剂中的钛、钒和钨[J].环境工程, 2020, 38(11):163-167.
[63] 肖雨亭,赵建新,汪德志,等.选择性催化还原脱硝催化剂钒组分回收的方法:中国, CN102732730A[P].2012-10-17.
[64] Wang S H, Xie Y L, Yan W F, et al. Leaching of vanadium from waste V2O5-WO3/TiO2 catalyst catalyzed by functional microorganisms[J]. Science of The Total Environment, 2018, 639:497-503.
[65] Fonti V,Beolchini F, Dell'Anno A. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments?[J]. Science of the Total Environmental, 2017, 563/564:302-319.