专题:生态环境材料及评价技术

废弃SCR脱硝催化剂处置与回收研究进展

  • 黄延伟 ,
  • 朱媛霏 ,
  • 杨秀红 ,
  • 张迎春
展开
  • 1. 中国科学院过程工程研究所公共技术中心, 北京 100190;
    2. 北京科技大学材料科学与工程学院, 北京 100083
黄延伟,博士研究生,研究方向为工业废物资源化利用,电子信箱:yanweihuang1026@163.com

收稿日期: 2022-11-10

  修回日期: 2023-03-06

  网络出版日期: 2024-04-08

基金资助

国家重点研发计划项目(2019YFC1907501)

Research progress on the disposal and recovery of waste SCR denitrification catalys

  • HUANG Yanwei ,
  • ZHU Yuanfei ,
  • YANG Xiuhong ,
  • ZHANG Yingchun
Expand
  • 1. Institutional Center for Shared Technologies and Facilities, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Received date: 2022-11-10

  Revised date: 2023-03-06

  Online published: 2024-04-08

摘要

废弃SCR脱硝催化剂是能源行业产生的典型难处理多金属危险废物,国内年排放量可达50万m3,因此,废弃SCR脱硝催化剂的高效处置,以及对废弃SCR脱硝催化剂中有价元素进行资源化回收利用颇为必要。介绍了废弃SCR脱硝催化剂的性质,综述了废弃SCR脱硝催化剂处置方式和资源化回收的研究进展,对比了各类回收技术的优缺点,展望了废弃SCR脱硝催化剂的高效回收利用。

本文引用格式

黄延伟 , 朱媛霏 , 杨秀红 , 张迎春 . 废弃SCR脱硝催化剂处置与回收研究进展[J]. 科技导报, 2024 , 42(4) : 62 -72 . DOI: 10.3981/j.issn.1000-7857.2024.04.006

Abstract

Waste denitration catalyst is a typical refractory muti-metal hazardous waste from the energy industry, and its annual emission reaches 500,000 m3 in China. Therefore, the efficient disposal of waste SCR denitrification catalysts and the recycling of valuable elements in waste SCR denitrification catalysts have become the focus of current research. In this review, we introduced the properties of waste SCR denitrification catalysts, summarized the research progress of disposal methods and resource recovery of waste SCR denitrification catalysts in recent years, and compared the advantages and disadvantages of each method. Finally, the efficient recovery and utilization of waste SCR denitrification catalysts were prospected.

参考文献

[1] 中国电力企业联合会.中国电力行业年度发展报告2018版[M].北京:中国市场出版社, 2018.
[2] 彭浩,张晓云.我国氮氧化物治理技术的现状和研究进展[J].广东化工, 2009, 36(12):83-85.
[3] 刘恩丽,张强,陈伟堂.我国燃煤电厂超低排放常见问题与建议[J].广东化工, 2021, 48(10):159-160.
[4] 李国亮.氮氧化物对环境的危害及污染控制技术[J].山西化工, 2019, 39(05):123-124.
[5] Liang Z, Ma X, Hai L, et al. The energy consumption and environmental impacts of SCR technology in China[J]. Applied Energy, 2011, 88(4):1120-1129.
[6] Hu Y, Griffiths K, Norton P R. Surface science studies of selective catalytic reduction of NO:Progress in the last ten years[J]. Surface Science, 2009, 603(10-12):1740-1750.
[7] 曾瑞.浅谈SCR废催化剂的回收再利用[J].中国环保产业, 2013(2):39-42.
[8] Nakajima F, Hamada I. The state-of-the-art technology of NOx control[J]. Catalysis Today, 1996, 29(1/4):109-115.
[9] 滕玉婷.废弃SCR脱硝催化剂资源化成分回收[D].南京:东南大学, 2020.
[10] 张立,陈崇明,王平. SCR脱硝催化剂的再生与回收[J].电站辅机, 2012, 33(3):27-30.
[11] 袁一帆,官贞珍.金属氧化物脱硝催化剂钾、钠中毒及抗中毒研究进展[J].广东化工, 2021, 48(12):75-77.
[12] 袁玲,邱兆富,杨骥,等. SCR催化剂碱(土)金属中毒及其改性再生研究进展[J].环境工程, 2018, 36(4):117-121.
[13] Wang J Z, Du H, Olayiwola, et al. Recent advances in the recovery of transition metals from spent hydrodesulfurization catalysts[J]. Tungsten, 2021, 3(3):305-328.
[14] 朱媛霏,李海霞,田丽艳,等.废弃SCR催化剂氧化酸洗除As工艺及机理研究[J].现代化工, 2023, 43(2):209-214.
[15] Qi C P, Bao W J, Wang L G, et al. Study of the V2O5-WO3/TiO2 catalyst synthesized from waste catalyst on selective catalytic reduction of NOx by NH3[J]. Catalysts,2017, 7(12):110.
[16] 武文粉,包炜军,李会泉,等. V2O5-WO3/TiO2烟气脱硝催化剂失活前后元素的赋存特征[J].过程工程学报,2016, 16(5):794-801.
[17] 武文粉.废脱硝催化剂回收钒钨及载体循环利用过程基础研究[D].北京:中国科学院大学(中国科学院过程工程研究所), 2020.
[18] 竹涛,张星,高放,等.废弃SCR催化剂再生研究进展[J].环境工程, 2018, 36(10):92-96.
[19] Cheng H I, Zehra T, Lim L B L, et al. Sorption characteristics of peat of Brunei DarussalamⅣ:Equilibrium,thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueoussolution[J].Environmental Earth Sciences, 2014, 72(7):2263-2277.
[20] 汪波.废弃脱硝催化剂的处置[J].中国环保产业, 2015(12):53-56.
[21] 张春平,秦川,杨岗,等.失活SCR脱硝催化剂处理技术进展[J].华电技术, 2020, 42(1):8-14.
[22] 戴泽军.废弃SCR催化剂重金属浸出特性及其无害化处理研究[D].武汉:华中科技大学, 2018.
[23] 王祺.化工危险废物焚烧及烟气处理工艺研究[J].化工设计通讯, 2022, 48(6):188-190.
[24] 薛琦.危险废物焚烧处置技术的分析[J].化工管理,2022(2):44-46.
[25] 王乐乐.废弃SCR催化剂中重金属钒、砷的迁移特性及无害化处置研究[D].武汉:华中科技大学, 2019.
[26] Daniel L, Camilla M, Mikko H. Thermal treatment of solid residues from WtE units:A review[J]. Waste Management, 2015, 37:82-94.
[27] Dai Z J, Wang L L, Tang H, et al. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst[J]. Chemosphere, 2018, 207:440-448.
[28] 许佳诺.铁矿石堆积床性质正交试验与烧结过程中废弃SCR催化剂的协同处置研究[D].杭州:浙江大学,2020.
[29] Hu H Y, Liu H, Shen W Q, et al. Comparison of CaO's effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China[J].Chemosphere, 2013, 93(4):590-596.
[30] 周昊,许佳诺,周明熙,等.高温熔融处理废弃SCR催化剂过程中的重金属固化研究[J].动力工程学报,2020, 40(6):492-501.
[31] 曹礼梅,王青,张巍,等.典型燃煤电厂废SCR催化剂解析及环境管理思考[J].装备环境工程, 2018, 15(2):45-51.
[32] 罗忠涛,肖宇领,杨久俊,等.垃圾焚烧飞灰有毒重金属固化稳定技术研究综述[J].环境污染与防治, 2012,34(8):58-62.
[33] 李浩,王恒,韩涛,等.采用烧结法降低垃圾焚烧飞灰浸出毒性的研究[J].环境化学, 2007(6):828-831.
[34] Quina M J, Bordado J C, Quinta R M. Treatment and use of air pollution control residues from MSW incineration:An overview[J]. Waste Manage, 2008, 28:2097-2121.
[35] 靳美娟.城市生活垃圾焚烧飞灰水泥固化技术研究[J].环境工程学报, 2016, 10(6):3235-3241.
[36] 王登权,何伟,王强,等.重金属在水泥基材料中的固化和浸出研究进展[J].硅酸盐学报, 2018, 46(5):683-693.
[37] Liu L J, Wang L L, Su S, et al. Leaching behavior of vanadium from spent SCR catalyst and its immobilization in cement-based solidification/stabilization with sulfurizing agent[J]. Fuel, 2019(243):406-412.
[38] He C, Kong F, Bao Q, et al. Cement solidification/stabilization of the toxicants from spent commercial SCR catalyst[J]. Journal of Chemical Technology&Biotechnology, 2020, 96(2):514-520.
[39] 周建国,张曙光,李萍,等.城市生活垃圾焚烧飞灰中重金属的固化/稳定化处理[J].天津城建大学学报,2015, 21(2):109-113.
[40] Bontempi E, Zacco A, Borgese L. A new method for municipal solid waste incinerator(MSWI)fly ash inertization, based on colloidal silica[J]. Journal of Environmental Monitoring, 2010, 12(3):2093-2099.
[41] 王丽媛,俞欣,王苏琴,等.含镍危废药剂稳定化与水泥固化比较分析[[J].黑龙江环境通报, 2015, 39(2):63-66.
[42] 朱子晗,郭燕燕,赵由才,等.垃圾焚烧飞灰中Pb及特征药剂稳定化处理[J].中国环境科学, 2021, 41(6):2737-2743.
[43] Wang L L, Su S, Qing M X, et al. Melting solidification and leaching behaviors of V/As during co-combustion of the spent SCR catalyst with coal[J]. Fuel, 2019, 252:164-171.
[44] 何川,王乐乐,杨晓宁,等.废弃选择性催化还原催化剂混掺对新催化剂脱硝性能的影响[J].化工进展,2018, 37(2):581-586.
[45] Ferella F. A review on management and recycling of spent selective catalytic reduction catalysts[J]. Journal of Cleaner Production, 2020, 246:1-19.
[46] 任真.脱硝废弃催化剂金属氧化物的回收利用[J].华电技术, 2012, 34(12):65-67.
[47] Kim J W, Hwang I J. Separation of valuables from spent selective catalytic reduction catalyst leaching solution by fabricated anion extraction resins[J]. Journal of Environmental Chemical Engineering, 2018, 6(1):1100-1108.
[48] Choi I H, Cho Y C, Moon G, et al. Recent developments in the recycling of spent selective catalytic reduction catalyst in South Korea[J]. Catalysts, 2020, 10:182-201.
[49] 李化全,郭传华.废弃脱硝催化剂中有价元素钛钒钨的综合利用研究[J].无机盐工业, 2014, 46(5):52-54.
[50] 陈颖敏,谢宗,王超凡.燃煤电厂废弃SCR催化剂回收二氧化钛的研究[J].中国电力, 2016, 49(6):151-156.
[51] 张振全,赵备备,李兰杰,等.废SCR脱硝催化剂钒、钛、钨选择性分离研究[J].钢铁钒钛, 2021, 42(1):24-31.
[52] Li P, Luo S H, Wang J. Extraction and separation of Fe and Ti from extracted vanadium residue by enhanced ammonium sulfate leaching and synthesis of LiFePO4/C for lithium-ion batteries[J]. Separation and Purification Technology, 2022, 282:120065.
[53] Zhang Q, Wu Y, Zuo T. Titanium extraction from spent selective catalytic reduction catalysts in a NaOH molten-salt system:Thermodynamic, experimental and kinetic studies[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2019, 50(1):471-479.
[54] 李力成,王磊,赵学娟,等.几种酸在废弃脱硝催化剂中提钒效果的比较[J].中国有色金属学报, 2016, 26(10):2230-2237.
[55] 吴涛,刘显彬,席文昌.从废弃脱硝催化剂进行钛分离中酸解率影响因素研究[J].现代化工, 2018, 38(1):115-117.
[56] 杨睿.失效SCR催化剂中TiO2的回收及再利用技术研究[D].杭州:浙江工业大学, 2015.
[57] 谢宗.燃煤电厂废弃SCR催化剂中回收有价金属的研究[D].北京:华北电力大学, 2016.
[58] Kim J W, Lee W G, Hwang I S, et al. Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching[J]. Journal of Industrial and Engineering Chemistry, 2015, 28:73-77.
[59] Choi I H, Moon G, Lee J Y, et al. Extraction of tungsten and vanadium from spent selective catalytic reduction catalyst for stationary application by pressure leaching process[J]. Journal of Cleaner Production, 2018, 197:163-169.
[60] 侯学军,章小明,程文博,等.废钒钛基SCR催化剂的处置方法研究进展[J].化工进展, 2021, 40(10):5313-5324.
[61] Li M, Du H, Zheng S L, et al. Extraction of vanadium from vanadium slag via non-salt roasting and ammonium oxalate leaching[J]. Journal of the Minerals, Metals&Materials Society, 2017, 69(10):1970-1975.
[62] 滕玉婷,张亚平,王玲,等.干湿法结合工艺回收废弃SCR脱硝催化剂中的钛、钒和钨[J].环境工程, 2020, 38(11):163-167.
[63] 肖雨亭,赵建新,汪德志,等.选择性催化还原脱硝催化剂钒组分回收的方法:中国, CN102732730A[P].2012-10-17.
[64] Wang S H, Xie Y L, Yan W F, et al. Leaching of vanadium from waste V2O5-WO3/TiO2 catalyst catalyzed by functional microorganisms[J]. Science of The Total Environment, 2018, 639:497-503.
[65] Fonti V,Beolchini F, Dell'Anno A. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments?[J]. Science of the Total Environmental, 2017, 563/564:302-319.
文章导航

/