综述

铝氢化钠储氢性能及其改进方法研究进展

  • 仝小刚 ,
  • 李志鹏 ,
  • 程军锋
展开
  • 陇南师范高等专科学校, 陇南 742500
仝小刚,副教授,研究方向为纳米材料的储氢性能,电子信箱:tongxgxx@163.com

收稿日期: 2023-07-19

  修回日期: 2023-11-01

  网络出版日期: 2024-04-08

基金资助

甘肃省高校教师创新基金项目(2023B-417);陇南师专博士基金项目(2023-01)

Review on hydrogen storage properties and improvement methods of the sodium aluminum hydride

  • TONG Xiaogang ,
  • LI Zhipeng ,
  • CHENG Junfeng
Expand
  • Department of Mechanical Engineering, Longnan Teachers College, Longnan 742500, China

Received date: 2023-07-19

  Revised date: 2023-11-01

  Online published: 2024-04-08

摘要

配位氢化物NaAlH4具有较高的储氢密度且生产成本低廉,是一种典型的储氢材料;然而,较高的脱氢温度、较慢的氢吸放速率及较差的可逆性限制了其实际应用。作为一种很有前途的车载储氢介质,其储氢性能的改性研究长期备受关注。论述了NaAlH4储氢性能及其改进方法,阐明了添加催化剂和结构纳米化2种基本改进方法的原理,也阐述了理论模拟在研究NaAlH4储氢性能中的重要促进作用。

本文引用格式

仝小刚 , 李志鹏 , 程军锋 . 铝氢化钠储氢性能及其改进方法研究进展[J]. 科技导报, 2024 , 42(4) : 84 -90 . DOI: 10.3981/j.issn.1000-7857.2024.04.008

Abstract

The complex hydride NaAlH4 is a typical hydrogen-storage material with high hydrogen-storage density and low production cost. However, its practical application is limited due to the high dehydrogenation temperature, slow adsorption and release rate of hydrogen and poor reversibility. As a promising hydrogen-storage medium for automobiles, the improvement of its hydrogen-storage properties has attracted much attention for a long time. In this paper, the hydrogen storage properties of NaAlH4 and its improvement methods are discussed. The principles of two basic improvement methods, namely adding catalyst and structure nanoscaling, are expounded. The important role of theoretical simulation in the study of hydrogen-storage properties of NaAlH4 is also commented. The purpose of this paper is to provide some guidance for further research on hydrogenstorage properties of NaAlH4 and to realize its extensive commercial application in the field of hydrogen-energy economy.

参考文献

[1] Singh G, Ramadass K, DasiReddy V D B C, et al. Material-based generation, storage, and utilisation of hydrogen[J]. Progress in Materials Science, 2023:101104.
[2] Meduri S, Nandanavanam J. Materials for hydrogen storage at room temperature:An overview[J]. Materials Today:Proceedings, 2023, 72:1-8.
[3] Haider R, Wen Y, Ma Z F, et al. High temperature proton exchange membrane fuel cells:Progress in advanced materials and key technologies[J]. Chemical Society Reviews, 2021, 50(2):1138-1187.
[4] Allendorf M D, Stavila V, Snider J L, et al. Challenges to developing materials for the transport and storage of hydrogen[J]. Nature Chemistry, 2022, 14(11):1214-1223.
[5] Usman M R. Hydrogen storage methods:Review and current status[J]. Renewable and Sustainable Energy Reviews, 2022, 167:112743.
[6] DoE U S. Target explanation document:Onboard hydrogen storage for light-duty fuel cell vehicles[J]. US Drive,2017, 1:1-29.
[7] Yang Y, Zhang X, Zhang L, et al. Recent advances in catalyst-modified Mg-based hydrogen storage materials[J].Journal of Materials Science&Technology, 2023, 163(10):182-211.
[8] Liu Y, Zhang W, Zhang X, et al. Nanostructured light metal hydride:Fabrication strategies and hydrogen storage performance[J]. Renewable and Sustainable Energy Reviews, 2023, 184:113560.
[9] Liu Y, Zhang X, Wang K, et al. Achieving ambient temperature hydrogen storage in ultrafine nanocrystalline TiO2@C-doped NaAlH4[J]. Journal of Materials Chemistry A, 2016, 4(3):1087-1095.
[10] Ley M B, Meggouh M, Moury R, et al. Development of hydrogen storage tank systems based on complex metal hydrides[J]. Materials, 2015, 8(9):5891-5921.
[11] Hauback B C, Brinks H W, Jensen C M, et al. Neutron diffraction structure determination of NaAlD4[J]. Journal of Alloys and Compounds, 2003, 358(1-2):142-145.
[12] The Materials project[EB/OL].[2023-10-20]. https://next-gen.materialsproject.org.
[13] Gross K J, Guthrie S, Takara S, et al. In-situ X-ray diffraction study of the decomposition of NaAlH4[J]. Journal of Alloys and Compounds, 2000, 297(1-2):270-281.
[14] Bogdanovic'B, Brand R A, Marjanovic A, et al. Metaldoped sodium aluminium hydrides as pontiaal new hydrogen storage materials[J]. Journal of Alloys and Compunds. 2000, 302(1-2):36-58.
[15] Sreedhar I, Kamani K M, Kamani B M, et al. A bird's eye view on process and engineering aspects of hydrogen storage[J]. Renewable and Sustainable Energy Reviews, 2018, 91:838-860.
[16] Milanese C, Garroni S, Gennari F, et al. Solid state hydrogen storage in alanates and alanate-based compounds:A review[J]. Metals, 2018, 8:567.
[17] Ouyang L, Chen K, Jiang J, et al. Hydrogen storage in light-metal based systems:A review[J]. Journal of Alloys and Compounds, 2020, 829:154597.
[18] Liu Y F, Ren Z H, Zhang X, et al. Development of catalyst-enhanced sodium alanate as an advanced hydrogenstorage material for mobile applications[J]. Energy Technology, 2018, 6:487-500.
[19] Khan J, Jain I P. Catalytic effect of Nb2O5 on dehydrogenation kinetics of NaAlH4[J]. International Journal of Hydrogen Energy, 2016, 41(19):8264-8270.
[20] Pitt M P, Vullum P E, Sørby M, et al. Hydrogen absorption kinetics of the transition-metal-chloride-enhanced NaAlH4 system[J]. Journal of Physical Chemistry C,2012, 116(27):14205-14217.
[21] Sun T, Zhou B, Wang H, et al. The effect of doping rare-earth chloride dopant on the dehydrogenation properties of NaAlH4 and its catalytic mechanism[J]. International Journal of Hydrogen Energy, 2008, 33(9):2260-2267.
[22] Frankcombe T J. Proposed mechanisms for the catalytic activity of Ti in NaAlH4[J]. Chemical Reviews, 2012,112:2164-2178.
[23] Ali N A, Ismail M. Modification of NaAlH4 properties using catalysts for solid-state hydrogen storage:A review[J]. International Journal of Hydrogen Energy, 2021, 46(1):766-782.
[24] Jain A, Agarwal S, Ichikawa T. Catalytic tuning of sorption kinetics of lightweight hydrides:A review of the materials and mechanism[J]. Catalysts, 2018, 8:651.
[25] Ali N A, Ismail M, Nasef M M, et al. Enhanced hydrogen storage properties of NaAlH4 with the addition of CoTiO3 synthesised via a solid-state method[J]. Journal of Alloys and Compounds, 2023, 934:167932.
[26] Schneemann A, White J L, Kang S, et al. Nanostructured metal hydrides for hydrogen storage[J]. Chemical Reviews, 2018, 118(22):10775-10839.
[27] Rueda M, Sanz-Moral L M, MartínÁ. Innovative methods to enhance the properties of solid hydrogen storage materials based on hydrides through nanoconfinement:A review[J]. The Journal of Supercritical Fluids, 2018,141:198-217.
[28] Nielsen T K, Javadian P, Polanski M, et al. Nanoconfined NaAlH4:Prolific effects from increased surface area and pore volume[J]. Nanoscale, 2014, 6:599-607.
[29] Bhakta R K, Maharrey S, Stavila V, et al. Thermodynamics and kinetics of NaAlH4 nanocluster decomposition[J].Physical Chemistry Chemical Physics, 2012, 14:8160-8169.
[30] Yue M, Lambert H, Pahon E, et al. Hydrogen energy systems:A critical review of technologies, applications,trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 146:111180.
[31] Epelle E I, Desongu K S, Obande W, et al. A comprehensive review of hydrogen production and storage:A focus on the role of nanomaterials[J]. International Journal of Hydrogen Energy, 2022, 47(47):20398-20431.
[32] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters,1996, 77:3865.
[33] Sotoodeh F, Huber B J, Smith K J. Dehydrogenation kinetics and catalysis of organic heteroaromatics for hydrogen storage[J]. International Journal of Hydrogen Energy, 2012, 37:2715-2722.
[34] Sunandana C S. Nanomaterials for hydrogen storage:The van't Hoff connection[J]. Resonance, 2007, 12:31-36.
[35] Grimvall G. Thermophysical properties of materials[M].Amsterdam:Elsevier, 1999.
[36] Ozolins V, Majzoub E H, Udovic T J. Electronic structure and rietveld refinement parameters of Ti-doped sodium alanates[J]. Journal of alloys and compounds,2004, 375(1-2):1-10.
[37] Pluengphon P, Tsuppayakornaek P, Sukmas W, et al.TM dopant-induced H-vacancy diffusion kinetics of sodium-lithium alanates:Ab initio study for hydrogen storage improvement[J]. International Journal of Hydrogen Energy, 2022, 47(43):18763-18771.
[38] Kawaguchi M. Kinetic and fourier transform infrared studies on the thermal decomposition of sodium hydride[J]. Journal of Physical Chemistry C, 2021, 125(22):11813-11819.
[39] Cho Y J, Cho H, Cho E S. Nanointerface engineering of metal hydrides for advanced hydrogen storage[J]. Chemistry of Materials, 2023, 35(2):366-385.
[40] Iniguez J, Yildirim T. First-principles study of Ti-doped sodium alanate surfaces[J]. Applied Physics Letters,2005, 86:103109.
[41] Dathara G K P, Mainardi D S. Structure and dynamics of Ti-Al-H compounds in Ti-doped NaAlH4[J]. Molecular Simulation, 2008, 34:201-210.
[42] Du A J, Smith S C, Lu G Q. Role of charge in destabilizing AlH4 and BH4 complex anions for hydrogen storage applications:Ab initio density functional calculations[J].Physical Review B, 2006, 74:193405.
[43] Wang P, Kang X D, Cheng H M. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4[J]. The Journal of Physical Chemistry B, 2005, 109(43):20131-20136.
[44] Kang X D, Wang P, Cheng H M. Electron microscopy study of Ti-doped sodium aluminum hydride prepared by mechanical milling NaH/AlNaH/Al with Ti powder[J].Journal of Applied Physics, 2006, 100:034914.
文章导航

/