[1] Singh G, Ramadass K, DasiReddy V D B C, et al. Material-based generation, storage, and utilisation of hydrogen[J]. Progress in Materials Science, 2023:101104.
[2] Meduri S, Nandanavanam J. Materials for hydrogen storage at room temperature:An overview[J]. Materials Today:Proceedings, 2023, 72:1-8.
[3] Haider R, Wen Y, Ma Z F, et al. High temperature proton exchange membrane fuel cells:Progress in advanced materials and key technologies[J]. Chemical Society Reviews, 2021, 50(2):1138-1187.
[4] Allendorf M D, Stavila V, Snider J L, et al. Challenges to developing materials for the transport and storage of hydrogen[J]. Nature Chemistry, 2022, 14(11):1214-1223.
[5] Usman M R. Hydrogen storage methods:Review and current status[J]. Renewable and Sustainable Energy Reviews, 2022, 167:112743.
[6] DoE U S. Target explanation document:Onboard hydrogen storage for light-duty fuel cell vehicles[J]. US Drive,2017, 1:1-29.
[7] Yang Y, Zhang X, Zhang L, et al. Recent advances in catalyst-modified Mg-based hydrogen storage materials[J].Journal of Materials Science&Technology, 2023, 163(10):182-211.
[8] Liu Y, Zhang W, Zhang X, et al. Nanostructured light metal hydride:Fabrication strategies and hydrogen storage performance[J]. Renewable and Sustainable Energy Reviews, 2023, 184:113560.
[9] Liu Y, Zhang X, Wang K, et al. Achieving ambient temperature hydrogen storage in ultrafine nanocrystalline TiO2@C-doped NaAlH4[J]. Journal of Materials Chemistry A, 2016, 4(3):1087-1095.
[10] Ley M B, Meggouh M, Moury R, et al. Development of hydrogen storage tank systems based on complex metal hydrides[J]. Materials, 2015, 8(9):5891-5921.
[11] Hauback B C, Brinks H W, Jensen C M, et al. Neutron diffraction structure determination of NaAlD4[J]. Journal of Alloys and Compounds, 2003, 358(1-2):142-145.
[12] The Materials project[EB/OL].[2023-10-20]. https://next-gen.materialsproject.org.
[13] Gross K J, Guthrie S, Takara S, et al. In-situ X-ray diffraction study of the decomposition of NaAlH4[J]. Journal of Alloys and Compounds, 2000, 297(1-2):270-281.
[14] Bogdanovic'B, Brand R A, Marjanovic A, et al. Metaldoped sodium aluminium hydrides as pontiaal new hydrogen storage materials[J]. Journal of Alloys and Compunds. 2000, 302(1-2):36-58.
[15] Sreedhar I, Kamani K M, Kamani B M, et al. A bird's eye view on process and engineering aspects of hydrogen storage[J]. Renewable and Sustainable Energy Reviews, 2018, 91:838-860.
[16] Milanese C, Garroni S, Gennari F, et al. Solid state hydrogen storage in alanates and alanate-based compounds:A review[J]. Metals, 2018, 8:567.
[17] Ouyang L, Chen K, Jiang J, et al. Hydrogen storage in light-metal based systems:A review[J]. Journal of Alloys and Compounds, 2020, 829:154597.
[18] Liu Y F, Ren Z H, Zhang X, et al. Development of catalyst-enhanced sodium alanate as an advanced hydrogenstorage material for mobile applications[J]. Energy Technology, 2018, 6:487-500.
[19] Khan J, Jain I P. Catalytic effect of Nb2O5 on dehydrogenation kinetics of NaAlH4[J]. International Journal of Hydrogen Energy, 2016, 41(19):8264-8270.
[20] Pitt M P, Vullum P E, Sørby M, et al. Hydrogen absorption kinetics of the transition-metal-chloride-enhanced NaAlH4 system[J]. Journal of Physical Chemistry C,2012, 116(27):14205-14217.
[21] Sun T, Zhou B, Wang H, et al. The effect of doping rare-earth chloride dopant on the dehydrogenation properties of NaAlH4 and its catalytic mechanism[J]. International Journal of Hydrogen Energy, 2008, 33(9):2260-2267.
[22] Frankcombe T J. Proposed mechanisms for the catalytic activity of Ti in NaAlH4[J]. Chemical Reviews, 2012,112:2164-2178.
[23] Ali N A, Ismail M. Modification of NaAlH4 properties using catalysts for solid-state hydrogen storage:A review[J]. International Journal of Hydrogen Energy, 2021, 46(1):766-782.
[24] Jain A, Agarwal S, Ichikawa T. Catalytic tuning of sorption kinetics of lightweight hydrides:A review of the materials and mechanism[J]. Catalysts, 2018, 8:651.
[25] Ali N A, Ismail M, Nasef M M, et al. Enhanced hydrogen storage properties of NaAlH4 with the addition of CoTiO3 synthesised via a solid-state method[J]. Journal of Alloys and Compounds, 2023, 934:167932.
[26] Schneemann A, White J L, Kang S, et al. Nanostructured metal hydrides for hydrogen storage[J]. Chemical Reviews, 2018, 118(22):10775-10839.
[27] Rueda M, Sanz-Moral L M, MartínÁ. Innovative methods to enhance the properties of solid hydrogen storage materials based on hydrides through nanoconfinement:A review[J]. The Journal of Supercritical Fluids, 2018,141:198-217.
[28] Nielsen T K, Javadian P, Polanski M, et al. Nanoconfined NaAlH4:Prolific effects from increased surface area and pore volume[J]. Nanoscale, 2014, 6:599-607.
[29] Bhakta R K, Maharrey S, Stavila V, et al. Thermodynamics and kinetics of NaAlH4 nanocluster decomposition[J].Physical Chemistry Chemical Physics, 2012, 14:8160-8169.
[30] Yue M, Lambert H, Pahon E, et al. Hydrogen energy systems:A critical review of technologies, applications,trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 146:111180.
[31] Epelle E I, Desongu K S, Obande W, et al. A comprehensive review of hydrogen production and storage:A focus on the role of nanomaterials[J]. International Journal of Hydrogen Energy, 2022, 47(47):20398-20431.
[32] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters,1996, 77:3865.
[33] Sotoodeh F, Huber B J, Smith K J. Dehydrogenation kinetics and catalysis of organic heteroaromatics for hydrogen storage[J]. International Journal of Hydrogen Energy, 2012, 37:2715-2722.
[34] Sunandana C S. Nanomaterials for hydrogen storage:The van't Hoff connection[J]. Resonance, 2007, 12:31-36.
[35] Grimvall G. Thermophysical properties of materials[M].Amsterdam:Elsevier, 1999.
[36] Ozolins V, Majzoub E H, Udovic T J. Electronic structure and rietveld refinement parameters of Ti-doped sodium alanates[J]. Journal of alloys and compounds,2004, 375(1-2):1-10.
[37] Pluengphon P, Tsuppayakornaek P, Sukmas W, et al.TM dopant-induced H-vacancy diffusion kinetics of sodium-lithium alanates:Ab initio study for hydrogen storage improvement[J]. International Journal of Hydrogen Energy, 2022, 47(43):18763-18771.
[38] Kawaguchi M. Kinetic and fourier transform infrared studies on the thermal decomposition of sodium hydride[J]. Journal of Physical Chemistry C, 2021, 125(22):11813-11819.
[39] Cho Y J, Cho H, Cho E S. Nanointerface engineering of metal hydrides for advanced hydrogen storage[J]. Chemistry of Materials, 2023, 35(2):366-385.
[40] Iniguez J, Yildirim T. First-principles study of Ti-doped sodium alanate surfaces[J]. Applied Physics Letters,2005, 86:103109.
[41] Dathara G K P, Mainardi D S. Structure and dynamics of Ti-Al-H compounds in Ti-doped NaAlH4[J]. Molecular Simulation, 2008, 34:201-210.
[42] Du A J, Smith S C, Lu G Q. Role of charge in destabilizing AlH4 and BH4 complex anions for hydrogen storage applications:Ab initio density functional calculations[J].Physical Review B, 2006, 74:193405.
[43] Wang P, Kang X D, Cheng H M. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4[J]. The Journal of Physical Chemistry B, 2005, 109(43):20131-20136.
[44] Kang X D, Wang P, Cheng H M. Electron microscopy study of Ti-doped sodium aluminum hydride prepared by mechanical milling NaH/AlNaH/Al with Ti powder[J].Journal of Applied Physics, 2006, 100:034914.