综述

智慧海洋数字孪生技术及其应用

  • 赵龙飞 ,
  • 姜晓轶 ,
  • 洪宇 ,
  • 孙苗 ,
  • 王漪 ,
  • 康林冲 ,
  • 曹磊
展开
  • 1. 国家海洋信息中心, 天津 300171;
    2. 自然资源部海洋信息技术创新中心, 天津 300171;
    3. 自然资源部城市国土资源监测与仿真重点实验室, 深圳 518034;
    4. 深圳市海洋发展研究促进中心, 深圳 518000
赵龙飞,助理研究员,研究方向为海洋数字孪生与智慧海洋,电子信箱:zhaolongfei220@163.com

收稿日期: 2023-07-11

  修回日期: 2023-09-28

  网络出版日期: 2024-04-08

基金资助

自然资源部城市国土资源监测与仿真重点实验室开放基金项目(KF-2022-07-006)

Smart ocean digital twin technology and its application

  • ZHAO Longfei ,
  • JIANG Xiaoyi ,
  • HONG Yu ,
  • SUN Miao ,
  • WANG Yi ,
  • KANG Linchong ,
  • CAO Lei
Expand
  • 1. National Marine Data and Information Service, Tianjin 300171, China;
    2. Marine Information Technology Innovation Center of the Ministry of Natural Resources, Tianjin 300171, China;
    3. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China;
    4. Shenzhen Marine Development & Promotion Center, Shenzhen 518000, China

Received date: 2023-07-11

  Revised date: 2023-09-28

  Online published: 2024-04-08

摘要

面向智慧海洋建设需求,提出海洋数字孪生技术体系及应用方向,分析了当前智慧海洋研究和发展现状,通过研究新一代信息技术与工业技术融合应用,阐述了数字孪生的概念内涵,并给出海洋科学认知、海洋开发利用、海洋装备全生命周期、海洋治理决策4个方面的数字孪生应用场景;针对智慧海洋建设与应用的共性需求,提出包含现实海洋、数字化海洋、交互映射、孪生海洋数据、孪生海洋知识、孪生智慧应用6个基本要素的海洋数字孪生六维模型架构理论;探讨了数字孪生赋能智慧海洋的关键技术问题及实现路径。

本文引用格式

赵龙飞 , 姜晓轶 , 洪宇 , 孙苗 , 王漪 , 康林冲 , 曹磊 . 智慧海洋数字孪生技术及其应用[J]. 科技导报, 2024 , 42(4) : 91 -101 . DOI: 10.3981/j.issn.1000-7857.2024.04.009

Abstract

In response to the demand for smart ocean construction, a digital twin technology system and application directions for the ocean are proposed. Firstly, the current research and development status of smart ocean is systematically reviewed and analyzed. By studying the integration and application of new generation information technology and industrial technology, the concept and connotation of digital twin are elaborated, and the application scenarios of digital twin in marine scientific cognition,marine development and utilization, the full life cycle of marine equipment and the ocean governance decision-making are provided. Then, in response to the common needs of smart ocean construction and application, a six-dimensional ocean digital twin model architecture theory is proposed, which includes six basic elements: real ocean, digital ocean, interactive mapping,twin ocean data, twin ocean knowledge, and twin intelligent application. Finally, key technical issues and implementation paths for empowering the smart ocean with digital twins are proposed and explored. The aim is to provide some thinking and reference for the future development and deep application of smart oceans through the research of marine digital twin technology.

参考文献

[1] 张宏军,何中文,程骏超.运用体系工程思想推进 "智慧海洋" 建设[J].科技导报, 2017, 35(20):13-18.
[2] 姜晓轶,潘德炉.谈谈我国智慧海洋发展的建议[J].海洋信息, 2018(1):1-6.
[3] 何广顺,李晋.海洋信息化顶层设计框架[J].海洋信息,2018(1):11-16.
[4] Tuegel E J, Ingraffea A R, Eason T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011,2011:1687-5966.
[5] Negri E, Fumagalli L, Macchi M. A review of the roles of digital twin in CPS-based production systems[J]. Procedia Manufacturing, 2017, 11:939-948.
[6] 李德仁.数字孪生城市:智慧城市建设的新高度[J].中国勘察设计, 2020(10):13-14.
[7] 张帆,葛世荣,李闯.智慧矿山数字孪生技术研究综述[J].煤炭科学技术, 2020, 48(7):168-176.
[8] Hu L, Nguyen N T, Tao W, et al. Modeling of cloudbased digital twins for smart manufacturing with MT connect[J]. Procedia Manufacturing, 2018, 26:1193-1203.
[9] Yun S, Park J H, Kim W T. Data-centric middleware based digital twin platform for dependable cyber-physical systems[C]//2017 Ninth International Conference on Ubiquitous and Future Networks(ICUFN). Milan:IEEE, 2017:922-926.
[10] Brenner B, Hummel V. Digital twin as enabler for an innovative digital shopfloor management system in the ESB logistics learning factory at Reutlingen-University[J]. Procedia Manufacturing, 2017, 9:198-205.
[11] Blair G S. Digital twins of the natural environment[J].Patterns, 2021, 2(10):100359.
[12] 景乾峰,神和龙,尹勇.一种基于虚拟现实系统的船舶数字孪生框架[J].北京交通大学学报, 2020, 44(5):117-124.
[13] 陶飞,刘蔚然,张萌,等.数字孪生五维模型及十大领域应用[J].计算机集成制造系统, 2019, 25(1):1-18.
[14] 陶飞,刘蔚然,刘检华,等.数字孪生及其应用探索[J].计算机集成制造系统, 2018, 24(1):1-18.
[15] 庄存波,刘检华,熊辉,等.产品数字孪生体的内涵、体系结构及其发展趋势[J].计算机集成制造系统, 2017,23(4):753-768.
[16] 周瑜,刘春成.雄安新区建设数字孪生城市的逻辑与创新[J].城市发展研究, 2018, 25(10):60-67.
[17] Jiang P, Meinert N, Jordão H, et al. Digital twin earthcoasts:Developing a fast and physics-informed surrogate model for coastal floods via neural operators[J/OL].[2021-10-14]. https://arxiv.org/abs/2110.07100v1.
[18] 吕曜辉,李瑞,成霄.数字孪生海战场动态声场预报[J].无线电工程, 2022, 52(5):719-723.
[19] 冶运涛,蒋云钟,梁犁丽,等.数字孪生流域:未来流域治理管理的新基建新范式[J].水科学进展, 2022, 33(5):683-704.
[20] 武文华,常进云,顾乃建,等.海洋装备智能运维的数字孪生方法研究[C]//第二十届中国海洋(岸)工程学术讨论会论文集(上).湛江:中国海洋学会海洋工程分会, 2022:322-328.
[21] 吕鹏.数字孪生城市:智能社会治理的基础架构[J].国家治理, 2023(11):66-70.
[22] 朱庆,张利国,丁雨淋,等.从实景三维建模到数字孪生建模[J].测绘学报, 2022, 51(6):1040-1049.
[23] 陶飞,马昕,戚庆林,等.数字孪生连接交互理论与关键技术[J].计算机集成制造系统, 2023, 29(1):1-10.
[24] 张新长,李少英,周启鸣,等.建设数字孪生城市的逻辑与创新思考[J].测绘科学, 2021, 46(3):147-152.
文章导航

/