盘点了2023年超材料学科在应用拓展、新材料研发、制造技术突破、可持续发展以及国际合作方面取得的突破性进展。在光学超材料领域,光学耗损控制、制备方法以及新功能拓展加快了光学超材料的发展;在热功能超材料领域,具有非互易热辐射特性的热学超材料研究有了新进展;力学超材料领域,从普适性的功能性表征到新结构、新机制、新功能、新方法的探索都有新突破;作为超材料家族的新成员,基于新物理概念的量子及时变超材料也有所进展,除此之外,超材料于常规材料的融合在基于二维材料的超表面和可重构超材料表面逐渐成为研究的热点。未来,超材料应在产业化应用落地、打破技术研究壁垒、抓住人工智能技术提供的新机遇以及挖掘新物理系统构建方面潜力和与常规材料融合发展等方面发力。
Metamaterials are a new class of artificial materials that emerged at the turn of the century, providing a new method of material construction and revolutionary technology for many technical fields. In the past 2023, research on metamaterials made certain progress in multiple aspects. This article attempts to review some of the main research works on metamaterials from several aspects, including optical metamaterials, thermal metamaterials, mechanics(mechanical) metamaterials, quantum and time-varying metamaterials, and the merging of metamaterials with conventional materials. The future research and development trends in the field are also predicted and anticipated.
[1] Guan F X, Guo X D, Zeng K B, et al. Overcoming losses in superlenses with synthetic waves of complex frequency[J]. Science, 2023, 381(6659):766-771.
[2] Ossiander M, Meretska M L, Hampel H K, et al. Extreme ultraviolet metalens by vacuum guiding[J]. Science, 2023,380(6640):59-63.
[3] Kim J, Seong J, Kim M, et al. Scalable manufacturing of high-index atomic layer-polymer hybrid metasurfaces for metaphotonics in the visible[J]. Nature Materials, 2023, 22(4):474-481.
[4] Di Francescantonio A, Zilli A, Rocco D, et al. All-optical free-space routing of upconverted light by metasurfaces via nonlinear interferometry[J]. Nature Nanotechnology,2023, 12, doi:10.1038/s41565-023-01549-2.
[5] Cordaro A, Edwards B, Nikkhah V, et al. Solving integral equations in free space with inverse-designed ultrathin optical metagratings[J]. Nature Nanotechnology, 2023, 18(4):365-372.
[6] Xiong B, Liu Y, Xu Y H, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise[J]. Science, 2023, 379(6629):294-299.
[7] Shayegan K J, Biswas S, Zhao B, et al. Direct observation of the violation of Kirchhoff’s law of thermal radiation[J].Nature Photonics, 2023, 17(10):891-896.
[8] Cotrufo M, Cordaro A, Sounas D L, et al. Passive biasfree non-reciprocal metasurfaces based on thermally nonlinear quasi-bound states in the continuum[J]. Nature Photonics, 2023, 12, doi:10.1038/s41566-023-01333-7.
[9] Kai Y, Dhulipala S, Sun R, et al. Dynamic diagnosis of metamaterials through laser-induced vibrational signatures[J]. Nature, 2023, 623(7987):514-521.
[10] Guo X F, Guzmán M, Carpentier D, et al. Non-orientable order and non-commutative response in frustrated metamaterials[J]. Nature, 2023, 618(7965):506-512.
[11] Meeussen A S, van Hecke M. Multistable sheets with rewritable patterns for switchable shape-morphing[J]. Nature, 2023, 621(7979):516-520.
[12] Bastek J H, Kochmann D M. Inverse design of nonlinear mechanical metamaterials via video denoising diffusion models[J]. Nature Machine Intelligence, 2023, 5(12):1466-1475.
[13] Hwang D, Lee C, Yang X W, et al. Metamaterial adhesives for programmable adhesion through reverse crack propagation[J]. Nature Materials, 2023, 22(8):1030-1038.
[14] Engheta N. Four-dimensional optics using time-varying metamaterials[J]. Science, 2023, 379(6638):1190-1191.
[15] Zhang X Y, Kim E, Mark D K, et al. A superconducting quantum simulator based on a photonic-bandgap metamaterial[J]. Science, 2023, 379(6629):278-283.
[16] Liu T J, Ou J Y, MacDonald K F, et al. Photonic metamaterial analogue of a continuous time crystal[J]. Nature Physics, 2023, 19(7):986-991.
[17] Galiffi E, Xu G Y, Yin S X, et al. Broadband coherent wave control through photonic collisions at time interfaces[J]. Nature Physics, 2023, 19(11):1703-1708.
[18] Moussa H, Xu G Y, Yin S Y, et al. Observation of temporal reflection and broadband frequency translation at photonic time interfaces[J]. Nature Physics, 2023, 19(6):863-868.
[19] Weber T, Kühner L, Sortino L, et al. Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces[J]. Nature Materials, 2023, 22(8):970-976.
[20] King J, Wan C H, Park T J, et al. Electrically tunable VO2-metal metasurface for mid-infrared switching, limiting and nonlinear isolation[J]. Nature Photonics, 2023,doi:10.1038/s41566-023-01324-8.
[21] Wei J X, Chen Y, Li Y, et al. Geometric filterless photodetectors for mid-infrared spin light[J]. Nature Photonics, 2023, 17(2):171-178.
[22] Sternbach A J, Moore S L, Rikhter A, et al. Negative refraction in hyperbolic hetero-bicrystals[J]. Science,2023, 379(6632):555-557.
[23] Hu H, Chen N, Teng H C, et al. Gate-tunable negative refraction of mid-infrared polaritons[J]. Science, 2023,379(6632):558-561.
[24] Pendry J, Zhou J, Sun J. Metamaterials:From engineered materials to engineering materials[J]. Engineering, 2022, 17(10):1-2.
[25] Pitruzzello G. Metaoptics for the consumer market[J]. Nature Photonics, 2023, 17(1):6-7.
[26] Szymanski N J, Rendy B, Fei Y X, et al. An autonomous laboratory for the accelerated synthesis of novel materials[J]. Nature, 2023, 624(7990):86-91.
[27] Merchant A, Batzner S, Schoenholz S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023,624(7990):80-85.
[28] Guo C, Luo Y. Light People:Prof. Sir John Pendry, father of metamaterials, spoke about the future of meta[J].Light:Science&Applications, 2023, 12(1):45.
[29] 周济.超材料与自然材料的融合[M].北京:科学出版社, 2016.