专题:2023年科技热点回眸

2023年采油采气工程技术热点回眸

  • 刘合 ,
  • 金旭 ,
  • 师俊峰
展开
  • 1. 中国石油勘探开发研究院, 北京 100083;
    2. 多资源协同陆相页岩油绿色开采全国重点实验室, 大庆 163712
刘合,教授级高级工程师,中国工程院院士,研究方向为能源发展战略、工程管理创新与实践、采油工程技术及装备研发等,电子信箱:liuhe@petrochina.com.cn

收稿日期: 2023-12-25

  修回日期: 2024-01-11

  网络出版日期: 2024-04-09

Annual review of advances in oil & gas production engineering technologies

  • LIU He ,
  • JIN Xu ,
  • SHI Junfeng
Expand
  • 1. Research Institute of Petroleum Exploration & Development PetroChina, Beijing 100083, China;
    2. National Key Laboratory of Continental Shale Oil, Daqing 163712, China

Received date: 2023-12-25

  Revised date: 2024-01-11

  Online published: 2024-04-09

摘要

2023年,采油采气工程围绕新区效益建产、老油气田挖潜增效、数字化智能化发展和绿色低碳转型等方面开展技术攻关并取得突出创新成果。分层注入领域,智能化水平不断提高、技术适应范围进一步拓展,大幅提升了分层注入的精细化水平;人工举升领域,新型高效举升技术指标再创新高、机采提效效果明显、数字化水平明显提升,节能降耗成效显著;采气工艺向绿色智能化采气、全生命周期精细采气、复合排水采气等方向发展,有效推动了天然气产量跨越式增长;储层改造技术取得重大进步,非常规水平井体积压裂2.0向精细化、个性化方向发展,压裂理论、装备工具材料、裂缝监测技术等取得创新突破,为油气高效勘探开发提供有力保障;井下作业领域在带压作业、连续油管作业、数字化智能化修井作业和复杂工况井下作业等方面技术进展明显,有效保障了油气水井健康生产。

本文引用格式

刘合 , 金旭 , 师俊峰 . 2023年采油采气工程技术热点回眸[J]. 科技导报, 2024 , 42(1) : 136 -149 . DOI: 10.3981/j.issn.1000-7857.2024.01.009

Abstract

In 2023 China's oil and gas production engineering made technological breakthroughs and achieved outstanding innovative results in areas such as effective production in new area, tapping potential and increasing efficiency in old fields,digital and intelligent development, and green low-carbon transformation. In the field of layered injection, the level of AI continued to improve and the scope of technological adaptation further expanded, significantly enhancing the level of refinement in layered injection. In the field of artificial lifting, the new high-efficiency lifting technology index reached a new height, with significant improvement in mechanical mining, efficiency and digital level, and significant energy-saving and consumption reduction effects. The development of gas production technology towards green and intelligent gas production, full lifecycle fine gas production, and composite drainage gas production effectively promoted the leapfrog growth of natural gas production. In the field of reservoir modification, unconventional horizontal well volume fracturing 2.0 was developing towards refinement and personalization, and innovative breakthroughs were made in fracturing theories, equipment tools and materials, and fracture monitoring technology, which would provide a strong guarantee for high-efficiency exploration and development of oil and gas. In the field of downhole operation, there were significant technological progress in the areas of pressure work, continuous tubing operation, digital intelligent well workover operation and downhole operation under complex working conditions, which effectively ensured the healthy production of oil, gas and water wells. These technological advancements provided strong support and engineering guarantees for the high-quality development of oil and gas field development business.

参考文献

[1] 刘合,裴晓含,罗凯,等.中国油气田开发分层注水工艺技术现状与发展趋势[J].石油勘探与开发, 2013, 40(6):733-737.
[2] 刘合,裴晓含,贾德利,等.第四代分层注水技术内涵、应用与展望[J].石油勘探与开发, 2017, 44(4):608-614.
[3] 孙金声,刘伟.我国石油工程技术与装备走向高端的发展战略思考与建议[J].石油科技论坛, 2021, 40(3):43-55.
[4] 刘合,郑立臣,俞佳庆,等.分层注水井下监测与数据传输技术的发展及展望[J].石油勘探与开发, 2023, 50(1):174-182.
[5] Ming E Y, Yu J Q, Zheng L C, et al. Transmission model of transient flow wave signal in intelligent layered water injection system[J]. Journal of Petroleum Exploration and Production Technology, 2023, 13(9):1935-1950.
[6] 中国石油新闻中心. 2022年度中国石油十大科技进展:进展4[EB/OL].[2023-12-24]. http://news. cnpc. com. cn/cms_udf/2023/sdkj1108/.
[7] Xing L, Guan S, Gao Y, et al. Measurement of a three-dimensional rotating flow field and analysis of the internal oil droplet migration[J]. Energies, 2023, 16(13):5094.
[8] Gao Y, Liu H, Yu J, et al. Design and analysis of an axial center-piercing hydrocyclone[J]. Energies, 2023, 16(19):6800.
[9] 邢雷,苗春雨,蒋明虎.井下微型气液旋流分离器优化设计与性能分析[J].化工学报, 2023, 74(8):3394-3406.
[10] Liao C L, Jia D L, Yang Q H, et al. An intelligent separated zone oil production technology based on electromagnetic coupling principle[C]//SPE/IATMI Asia Pacific Oil&Gas Conference and Exhibition. Jakarta, Indonesia:SPE, 2023:SPE-215238-MS.
[11] 许建国,杨清海,伊鹏,等.采油井模块化分层流体取样与压力测试技术[J].石油勘探与开发, 2022, 49(2):385-393.
[12] Zhang X, Wang C, Sun Y, et al. Cloud-edge combination:A novel intelligent intermittent pumping optimization and control method for tight oil wells[C]//Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi, UAE:SPE, 2022:SPE-211802-MS.
[13] 孙延安,郑东志,钱坤,等.古龙页岩油水平井宽排量潜油电泵举升技术现状[J].采油工程, 2022(3):43-49.
[14] Gao Y, Cao W D, Zhang Y J, et al. Investigation of high-speed deep well pump performance with different outlet setting angle of space guide vane[J]. Frontiers in Energy Research, 2023, 10:1072901.
[15] 李越,白健华,于法浩,等.渤海油田宽幅电潜泵举升技术研究及应用[J].承德石油高等专科学校学报,2023, 25(3):20-26.
[16] 韦敏,车传睿,龚俊,等.宽幅电潜泵结构设计与内部流场特性分析[J].水泵技术, 2023(5):11-15.
[17] Chen S, Deng F, Chen G, et al. Research and application of big data production measurement method for SRP wells based on electrical parameters[C]//International Petroleum Technology Conference. Bangkok, Thailand:OnePetro, 2023:IPTC-23013-EA.
[18] Fraga R S, Castellões O G S, Assmann B W, et al. Progressive Vortex Pump:A new artificial lift pumped method[J]. SPE Production&Operations, 2020, 35(2):454-463.
[19] Carpenter C. Subsurface compressor system improves gas production in unconventional reservoirs[J]. Journal of Petroleum Technology, 2021, 73(7):62-63.
[20] JPT staff. legends of artificial lift(July 2022)[J]. Journal of Petroleum Technology, 2022, 74(7):34-38.
[21] Alimbekov R, Alimbekova S, Akshentsev V G, et al.Method for transmitting telemetric signals during the operation of producing wells by sucker rod pumps and a system for its implementation:RU2022123337[P]. 2022-09-01
[22] 中国石油勘探开发研究院,中国石油天然气集团有限公司采油采气重点实验室.油井生产系统智能优化决策技术[J].石油科技论坛, 2022, 41(3):106.
[23] 柳智青.原油如何“零碳”:中国石油吉林油田产出我国首桶“零碳原油”的调查[N].中国石油报, 2023-08-24(002).
[24] 于洋.零碳采油从零起步[J].中国石油石化, 2022(20):44-47.
[25] 贾敏,郭东红,李隽,等.涩北气田泡沫排水采气效果下降原因分析及对策[J].石油钻采工艺, 2022, 44(4):482-486.
[26] 肖雨阳,李军亮.柱塞气举排水采气井工作制度优化方法研究[J].天然气与石油, 2022, 40(6):81-87.
[27] Al-Hamzah A, Sharafaddin O, Sirajuddin M S. Artificial lift method selection and design to enhance well production optimization:A field case study[J]. Petroleum&Coal, 2023, 65(1):1-12.
[28] Syed F I, Muther T, Dahaghi A K, et al. AI/ML assisted shale gas production performance evaluation[J]. Journal of Petroleum Exploration and Production Technology,2021, 11(9):3509-3519.
[29] Zhang H, Chen J, Ye C, et al. Life-cycle deliquification techniques and their application for deep shale gas reservoirs[J]. Natural Gas Industry B, 2023, 10(4):333-340.
[30] Zalavadia H, Gokdemir M, Sinha U, et al. Real time artificial lift timing and selection using hybrid data-driven and physics models[C]//SPE Western Regional Meeting,Anchorage, Alaska, USA:SPE, 2023:SPE-213040-MS.
[31] Cope B, Gilmore D. Case study:Gas lift-plunger lift combination creates full life cycle production solution[J].Journal of Petroleum Technology, 2023, 75(10):49-53.
[32] Okoro F, Arochukwu E, Abuah N, et al. A successful foam assisted gas lift trial in a matured niger delta field[C]//SPE Nigeria Annual International Conference and Exhibition. Lagos, Nigeria:SPE, 2023:SPE-217208-MS.
[33] Amani P, Firouzi M. Uninterrupted lift of gas, water, and fines in unconventional gas wells using foam-assisted artificial lift[J]. Gas Science and Engineering, 2023, 114(2023):204977.
[34] Sayma O, Jones K, Hale R, et al. Surface compression and PAGL:Increase and extend production for shale wells[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE,2023:URTEC-3867326-MS.
[35] 郑新权,何春明,杨能宇,等.非常规油气藏体积压裂2.0工艺及发展建议[J].石油科技论坛, 2022, 41(3):1.
[36] 石油商报. FrSmart1.0发布!他们交出“自主研发”优秀答卷[EB/OL].(2023-11-29)[2023-12-24]. https://baijiahao.baidu.com/s?id=1783868339966948487&wfr=spider&for=pc.
[37] Zhang Y, Ali W, Jiang C, et al. Optimal treatment and reuse of flowback and produced water:Selective removal of problematic cations for stability of friction reducers[C]//Unconventional Resources Technology Conference(URTeC), 2023:482-505.
[38] Sarmah A, Ataceri I Z, Vijapurapu R, et al. Rock and fluid-based correlation to describe surfactant molecular structure's impact on spontaneous imbibition experiments'performance[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. URTEC:SPE, 2023:D011S013R002.
[39] Li J, He S, Wu M. A new type microproppant and its property evaluation for shale gas reservoirs[J]. SPE Journal, 2023, 209:1-16.
[40] Gala D, Pankaj P, Kamps J, et al. Optimizing completion design to improve near-wellbore and far-field cluster efficiency:Leveraging downhole data and calibrated physics-based models[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE, 2023:URTEC-3860762-MS.
[41] Ma W, Wu K, Jin G. Geomechanics modeling of strainbased pressure estimates:Insights from distributed fiber optic strain measurements[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver,Colorado, USA:SPE, 2023:URTEC-3864861-MS.
[42] Gurjao K G R, Gildin E, Gibson R, et al. Modeling of fiber-optic strain response when pumping stops to verify potential continuation of fracture extension[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE, 2023:URTEC-3870194-MS.
[43] Ratnayake R, Ghassemi A. Modeling of fiber optic strain responses to shear deformation of fractures[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE, 2023:URTEC-3852059-MS.
[44] Owens K, Chittenden H, Schult M, et al. Using disposable fiber to monitor simul-frac stimulation fracture growth[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE,2023:URTEC-3850500-MS.
[45] Fowler G, Zaghloul J, Jones D, et al. A success story:Screening and optimizing refracs in the eagle ford[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE, 2023:URTEC-3848875-MS.
[46] Leshchyshyn T, Vande A, Barba R, et al. Refrac and recomplete whole history in the North Dakota:Determining detailed type and sub-type of refrac and incremental production[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado, USA:SPE, 2023:URTEC-3871674-MS.
[47] Tang S, Qin F, Dong L, et al. Development status and application of under pressure operation equipment technology[C]//IOP Conference Series:Earth and Environmental Science. Xiamen:IOP Publishing, 2021:012010.
[48] Unnikrishnan V, Navin G, Breitenfeld F. Improved bearing design in workover motor boosts operational efficiency for plug milling in North America[C]//SPE/ICoTA Well Intervention Conference and Exhibition. The Woodlands, Texas:SPE, 2023:SPE-212913-MS.
[49] Chishti S S, Gopalan B, Craig S. Field trial to enhance open-hole coiled tubing accessibility with the use of a special coiled tubing lubricant[C]//SPE/ICoTA Well Intervention Conference and Exhibition. The Woodlands,Texas:SPE, 2023:SPE-212903-MS.
[50] Chishti S S, Sima L, Bukhari M A E. A Cost-Effective approach to enhance coiled tubing accessibility in extended reach wells with the use of a special lubricant:A case history[C]//SPE/ICoTA Well Intervention Conference and Exhibition. Texas:OnePetro, 2023:SPE-212894-MS.
[51] World oil. Combining video and ultrasound increases downhole data capture accuracy[EB/OL].[2023-12-24].https://www.worldoil.com/magazine/2023/may-2023/special-focus-well-completion-technology/combining-video-and-ultrasound-increases-downhole-data-capture-accuracy/.
[52] SLB Products and Services. Fiber-optic solutions[EB/OL].(2021-08-19)[2023-12-24]. https://www.slb.com/products-and-services/innovating-in-oil-and-gas/reservoir-characterization/surface-and-downhole-logging/optiq-schlumberger-fiber-optic-solutions.
[53] 王宏亮.油田修井作业自动化装置的应用[J].中国石油和化工标准与质量, 2023, 43(10):104-106.
[54] 王鑫,王丰良,赵志成,等. DYJ80型自动化带压作业机研制及应用[J].石油机械, 2023, 51(7):104-112.
[55] Troup D J, Correia G, Murchie S W, et al. Carbon composite technologies combine with the latest high performance downhole tractor to gather production data from deeper than ever before, logging 32 compartments over25000 ft horizontally to a total depth of 40, 600 ft[C]//SPE/ICoTA Well Intervention Conference and Exhibition.Texas, USA:SPE, 2023:SPE-212917-MS.
文章导航

/