[1] Salehabadi A, Dawi E A, Sabur D A, et al. Progress on nano-scaled alloys and mixed metal oxides in solid-state hydrogen storage; An overview[J]. Journal of Energy Storage, 2023, 61:106722.
[2] Staffell I, Scamman D, Velazquez A A, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy&Environmental Science, 2019, 12(2):463-491.
[3] Chen Z, Ma Z, Zheng J, et al. Perspectives and challenges of hydrogen storage in solid-state hydrides[J]. Chinese Journal of Chemical Engineering, 2021, 29:1-12.
[4] BogdanovićB, Hofmann H, Neuy A, et al. Ni-doped versus undoped Mg-MgH2 materials for high temperature heat or hydrogen storage[J]. Journal of Alloys and Compounds, 1999, 292(1):57-71.
[5] Cheng F, Tao Z, Liang J, et al. Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures[J]. Chemical Communications, 2012, 48(59):7334-7343.
[6] Yang X L, Li W X, Zhang J Q, et al. Hydrogen storage performance of Mg/MgH2 and its improvement measures:Research progress and trends[J]. Materials, 2023, 16(4):1587.
[7] Yu Z C, Liu X, Liu Y, et al. Synergetic catalysis of Ni@C@CeO2for driving ab/desorption of MgH2 at moderate temperature[J]. Fuel, 2024, 357:129726.
[8] Song M C, Xie R K, Zhang L T, et al. Combined "Gateway" and "Spillover" effects originated from a CeNi5 alloy catalyst for hydrogen storage of MgH2 [J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(5):970-976.
[9] Zhang L, Zhao C, Wu F, et al. Carbon-wrapped Ti-Co bimetallic oxide nanocages:Novel and efficient catalysts for hydrogen storage in magnesium hydride[J]. Journal of Alloys and Compounds, 2023, 952:170002.
[10] Xu N, Wang K W, Zhu Y F, et al. PdNi biatomic clusters from metallene unlock record-low onset dehydrogenation temperature for bulk-MgH2 [J]. Advanced Materials, 2023, 35:2303173.
[11] Zhu W, Ren L, Li Y H, et al. In situ high-energy synchrotron X-ray studies in thermodynamics of Mg-In-Ti hydrogenstorage system[J]. Energy Material Advances,2023, 4:0069.
[12] Peng C, Zhang Q G. YCx Fy nanosheets-supported Ni nanoparticles as a high-efficient catalyst for hydrogen desorption of MgH2 [J]. Nano Research, 2023, 16(8):10938-10945.
[13] Zhang L C, Zhang X, Zhang W X, et al. Nanoparticulate ZrNi:In situ disproportionation effectively enhances hydrogen cycling of MgH2 [J]. ACS Applied Materials&Interfaces, 2023, 15(34), doi:10.1021/acsami.3c07952.
[14] Wei M X, Liu Y J, Xing X F, et al.(TiVZrNb)83Cr17 high-entropy alloy as catalyst for hydrogen storage in MgH2 [J]. Chemical Engineering Journal, 2023, 476:146639.
[15] Zhang J X, Liu H, Zhou C S, et al. TiVNb-based high entropy alloys as catalysts for enhanced hydrogen storage in nanostructured MgH2 [J]. Journal of Materials Chemistry A, 2023, 11(9):4789-4800.
[16] Wan H Y, Yang X, Zhou S M, et al. Enhancing hydrogen storage properties of MgH2 using FeCoNiCrMn high entropy alloy catalysts[J]. Journal of Materials Science&Technology, 2023, 149:88-98.
[17] Aguey-Zinsou K F, Ares-Fernández J R. Hydrogen in magnesium:New perspectives toward functional stores[J]. Energy&Environmental Science, 2010, 3(5):526-543.
[18] Zhang J, Li Z, Wu Y, et al. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials[J]. RSC Advances, 2019, 9(1):408-428.
[19] Yartys V A, Lototskyy M V, Akiba E, et al. Magnesium based materials for hydrogen based energy storage:Past,present and future[J]. International Journal of Hydrogen Energy, 2019, 44(15):7809-7859.
[20] Fernández J F, Sánchez C R. Rate determining step in the absorption and desorption of hydrogen by magnesium[J]. Journal of Alloys and Compounds, 2002, 340(1):189-198.
[21] Shi D, Ni Y, Li G, et al. A computational study of Mgm Hn nanoclusters with n∶m≥2∶1 for efficient hydrogen storage[J]. International Journal of Quantum Chemistry, 2023, 123(6):e27058.
[22] Ren L, Li Y, Zhang N, et al. Nanostructuring of Mgbased hydrogen storage materials:Recent advances for promoting key applications[J]. Nano-Micro Letters, 2023,15(1):93.
[23] Huang S J, Mose M P. High-energy ball milling-induced crystallographic structure changes of AZ61-Mg alloy for improved hydrogen storage[J]. Journal of Energy Storage, 2023, 68:107773.
[24] Zou R, Zhang W, Dai M, et al. One-step synthesis of light metal nanoparticle from metastable complex[J].Small, 2023, 19(8):2206518.
[25] Tian H, Yan X, Li X, et al. Microstructure characteristics and hydrogen storage kinetic of nano MgNi-REO alloys[J]. Carbon Letters, 2023, 33(7):2211-2222.
[26] Zhu X, Yang M, Mu D, et al. Synergistic combination of Ni nanoparticles and Ti3C2 MXene nanosheets with MgH2 particles for hydrogen storage[J]. ACS Applied Nano Materials, 2023, 6(23):21521-21531.
[27] Wang X C, Jia Y X, Xiao X Z, et al. Robust architecture of 2D nano Mg-based borohydride on graphene with superior reversible hydrogen storage performance[J]. Journal of Materials Science&Technology, 2023,146:121-130.
[28] Zhang J J, Zhang B, Xie X B, et al. Recent advances in the nanoconfinement of Mg-related hydrogen storage materials:A minor review[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(1):14-24.
[29] Lu C, Panda S, Zhu W, et al. Enhanced hydrogen sorption properties of uniformly dispersed Pd-decorated three-dimensional(3D)Mg@Pd architecture[J]. International Journal of Hydrogen Energy, 2024, 50:979-989.
[30] Chen Y S, Guo J J, Liu P B, et al. Highly symmetrical B12@Mg20C12 with icosahedral B12 motif:A potential hydrogen storage medium[J]. Results in Physics, 2023, 48:106390.
[31] Li Y, Zhang Q, Ren L, et al. Core-shell nanostructured magnesium-based hydrogen storage materials:A critical review[J]. Industrial Chemistry&Materials, 2023, 1(3):282-298.
[32] Myers W R, Wang L W, Richardson T J, et al. Calculation of thermodynamic, electronic, and optical properties of monoclinic Mg2NiH4[J]. Journal of Applied Physics,2002, 91(8):4879-4885.
[33] Ma Z, Huang Z, Li Z, et al. Insights into thermodynamic destabilization in Mg-In-D hydrogen storage system:A combined synchrotron X-ray and neutron diffraction study[J]. Energy Storage Materials, 2023, 56:432-442.
[34] Cao W C, Ding X, Chen R R, et al. In-situ precipitation of ultrafine Mg2Ni particles in Mg-Ni-Ag metal fibers and their hydrogen storage properties[J]. Chemical Engineering Journal, 2023, 475:146252.
[35] Zhou H, Ding Z, Chen Y A, et al. Enhancement of hydrogen storage properties from amorphous Mg85Ni5Y10 alloy[J]. Journal of Non-Crystalline Solids, 2023, 605:122167.
[36] Zhao Y Y, Zhu Y F, Shi R, et al. Structural inhomogeneity:A potential strategy to improve the hydrogen storage performance of metal hydrides[J]. Journal of Materials Chemistry A, 2023, 11(25):13255-13265.
[37] Lin X, Yin C, Ren L, et al. A one-and three-dimensional coupled model and simulation investigation for the large-scale oil-heating type Mg-based hydrogen storage tank[J]. Chemical Engineering Journal, 2023,472:144943.
[38] Chang H, Tao Y B, Ye H. Numerical study on hydrogen and thermal storage performance of a sandwich reaction bed filled with metal hydride and thermochemical material[J]. International Journal of Hydrogen Energy, 2023,48(52):20006-20019.
[39] Babu K S, Kumar E A, Murthy S S. Thermochemical energy storage using coupled metal hydride beds of MgLaNi5 composites and LaNi5 based hydrides for concentrated solar power plants[J]. Applied Thermal Engineering, 2023, 219:119521.
[40] Mellouli S, Alqahtani T, Askri F, et al. Parametric assessment of a hybrid heat storage unit based on paired metal hydrides and phase change materials[J]. Applied Thermal Engineering, 2023, 226:120257.
[41] Alqahtani T. Performance evaluation of a solar thermal storage system proposed for concentrated solar power plants[J]. Applied Thermal Engineering, 2023, 229:120665.
[42] Kim Y, Dong X, Chae S, et al. Ultrahigh-porosity MgO microparticles for heat-energy storage[J]. Advanced Materials, 2023, 35(43):2204775.