专题:2023年科技热点回眸

2023年镁基储氢材料研究热点回眸

  • 邹建新 ,
  • 丁文江
展开
  • 1. 上海市氢科学重点实验室 & 上海交通大学氢科学中心, 上海 200240;
    2. 上海交通大学材料科学与工程学院, 上海 200240;
    3. 上海交通大学轻合金精密成型国家工程研究中心 & 金属基复合材料国家重点实验室, 上海 200240
邹建新,教授,研究方向为镁基能源材料开发与应用,电子信箱:zoujx@sjtu.edu.cn

收稿日期: 2023-12-29

  修回日期: 2024-01-05

  网络出版日期: 2024-04-09

基金资助

国家重点研发计划项目(2022YFB3803700)

Review of research hotspots in magnesium-based hydrogen storage materials in 2023

  • ZOU Jianxin ,
  • DING Wenjiang
Expand
  • 1. Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    3. National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2023-12-29

  Revised date: 2024-01-05

  Online published: 2024-04-09

摘要

2023年,镁基储氢材料及其固态储运氢技术研发与应用发展迅猛,热点频现,出现了诸多显著成果。在材料设计开发方面,通过多种改性手段有效改善了镁基储氢材料的热/动力学性能,实现了材料在近室温条件下吸氢,200℃以下放氢,循环寿命也在不断提升。在工程应用方面,全球首台吨级镁基固态储运氢车问世,多个示范应用项目与材料生产线开始落地建设。社会各界都在关注并积极推动镁基储氢材料与系统的研发,努力探索潜在的产业应用。根据镁基储氢材料的催化改性、纳米化改性、合金化改性、系统装置开发和示范应用五大方向,总结了2023年国内外镁基储氢材料的重要进展,探讨了镁基储氢材料在氢储运、氢储能和固体氧化物燃料电池发电等领域的应用场景,展望了镁基储氢材料在2024年所面临的机遇与挑战。

本文引用格式

邹建新 , 丁文江 . 2023年镁基储氢材料研究热点回眸[J]. 科技导报, 2024 , 42(1) : 204 -216 . DOI: 10.3981/j.issn.1000-7857.2024.01.013

Abstract

The year of 2023 witnessed the rapid development and application of magnesium-based hydrogen storage materials and systems, with many research hotspots and remarkable application milestones. Regarding material design and development,researchers were successfully enhanced the thermodynamics/kinetics of magnesium-based hydrogen storage materials through various modification methods and realized the near-room temperature hydrogen absorption, hydrogen release below 200° C, and improved cycle life. In terms of engineering applications, the world's first tonnage magnesium-based solid-state hydrogen storage and transport trailer was launched, and several demonstration application projects and material production lines were also implemented. The whole community is now interested in promoting the development of magnesium-based hydrogen storage materials and systems, exploring their potential application scenarios. This paper provides an overview and outlook of magnesium based hydrogen storage materials on five aspects: catalysis, nanotechnology, alloying, storage system, and demonstration applications. It summarizes the progress of magnesium-based hydrogen storage materials made in 2023, explores their potential applications in hydrogen storage and transportation, energy storage, and power generation using solid oxide fuel cells. Opportunities and challenges that magnesium-based hydrogen storage materials will encounter in the coming 2024 are also discussed.

参考文献

[1] Salehabadi A, Dawi E A, Sabur D A, et al. Progress on nano-scaled alloys and mixed metal oxides in solid-state hydrogen storage; An overview[J]. Journal of Energy Storage, 2023, 61:106722.
[2] Staffell I, Scamman D, Velazquez A A, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy&Environmental Science, 2019, 12(2):463-491.
[3] Chen Z, Ma Z, Zheng J, et al. Perspectives and challenges of hydrogen storage in solid-state hydrides[J]. Chinese Journal of Chemical Engineering, 2021, 29:1-12.
[4] BogdanovićB, Hofmann H, Neuy A, et al. Ni-doped versus undoped Mg-MgH2 materials for high temperature heat or hydrogen storage[J]. Journal of Alloys and Compounds, 1999, 292(1):57-71.
[5] Cheng F, Tao Z, Liang J, et al. Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures[J]. Chemical Communications, 2012, 48(59):7334-7343.
[6] Yang X L, Li W X, Zhang J Q, et al. Hydrogen storage performance of Mg/MgH2 and its improvement measures:Research progress and trends[J]. Materials, 2023, 16(4):1587.
[7] Yu Z C, Liu X, Liu Y, et al. Synergetic catalysis of Ni@C@CeO2for driving ab/desorption of MgH2 at moderate temperature[J]. Fuel, 2024, 357:129726.
[8] Song M C, Xie R K, Zhang L T, et al. Combined "Gateway" and "Spillover" effects originated from a CeNi5 alloy catalyst for hydrogen storage of MgH2 [J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(5):970-976.
[9] Zhang L, Zhao C, Wu F, et al. Carbon-wrapped Ti-Co bimetallic oxide nanocages:Novel and efficient catalysts for hydrogen storage in magnesium hydride[J]. Journal of Alloys and Compounds, 2023, 952:170002.
[10] Xu N, Wang K W, Zhu Y F, et al. PdNi biatomic clusters from metallene unlock record-low onset dehydrogenation temperature for bulk-MgH2 [J]. Advanced Materials, 2023, 35:2303173.
[11] Zhu W, Ren L, Li Y H, et al. In situ high-energy synchrotron X-ray studies in thermodynamics of Mg-In-Ti hydrogenstorage system[J]. Energy Material Advances,2023, 4:0069.
[12] Peng C, Zhang Q G. YCx Fy nanosheets-supported Ni nanoparticles as a high-efficient catalyst for hydrogen desorption of MgH2 [J]. Nano Research, 2023, 16(8):10938-10945.
[13] Zhang L C, Zhang X, Zhang W X, et al. Nanoparticulate ZrNi:In situ disproportionation effectively enhances hydrogen cycling of MgH2 [J]. ACS Applied Materials&Interfaces, 2023, 15(34), doi:10.1021/acsami.3c07952.
[14] Wei M X, Liu Y J, Xing X F, et al.(TiVZrNb)83Cr17 high-entropy alloy as catalyst for hydrogen storage in MgH2 [J]. Chemical Engineering Journal, 2023, 476:146639.
[15] Zhang J X, Liu H, Zhou C S, et al. TiVNb-based high entropy alloys as catalysts for enhanced hydrogen storage in nanostructured MgH2 [J]. Journal of Materials Chemistry A, 2023, 11(9):4789-4800.
[16] Wan H Y, Yang X, Zhou S M, et al. Enhancing hydrogen storage properties of MgH2 using FeCoNiCrMn high entropy alloy catalysts[J]. Journal of Materials Science&Technology, 2023, 149:88-98.
[17] Aguey-Zinsou K F, Ares-Fernández J R. Hydrogen in magnesium:New perspectives toward functional stores[J]. Energy&Environmental Science, 2010, 3(5):526-543.
[18] Zhang J, Li Z, Wu Y, et al. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials[J]. RSC Advances, 2019, 9(1):408-428.
[19] Yartys V A, Lototskyy M V, Akiba E, et al. Magnesium based materials for hydrogen based energy storage:Past,present and future[J]. International Journal of Hydrogen Energy, 2019, 44(15):7809-7859.
[20] Fernández J F, Sánchez C R. Rate determining step in the absorption and desorption of hydrogen by magnesium[J]. Journal of Alloys and Compounds, 2002, 340(1):189-198.
[21] Shi D, Ni Y, Li G, et al. A computational study of Mgm Hn nanoclusters with n∶m≥2∶1 for efficient hydrogen storage[J]. International Journal of Quantum Chemistry, 2023, 123(6):e27058.
[22] Ren L, Li Y, Zhang N, et al. Nanostructuring of Mgbased hydrogen storage materials:Recent advances for promoting key applications[J]. Nano-Micro Letters, 2023,15(1):93.
[23] Huang S J, Mose M P. High-energy ball milling-induced crystallographic structure changes of AZ61-Mg alloy for improved hydrogen storage[J]. Journal of Energy Storage, 2023, 68:107773.
[24] Zou R, Zhang W, Dai M, et al. One-step synthesis of light metal nanoparticle from metastable complex[J].Small, 2023, 19(8):2206518.
[25] Tian H, Yan X, Li X, et al. Microstructure characteristics and hydrogen storage kinetic of nano MgNi-REO alloys[J]. Carbon Letters, 2023, 33(7):2211-2222.
[26] Zhu X, Yang M, Mu D, et al. Synergistic combination of Ni nanoparticles and Ti3C2 MXene nanosheets with MgH2 particles for hydrogen storage[J]. ACS Applied Nano Materials, 2023, 6(23):21521-21531.
[27] Wang X C, Jia Y X, Xiao X Z, et al. Robust architecture of 2D nano Mg-based borohydride on graphene with superior reversible hydrogen storage performance[J]. Journal of Materials Science&Technology, 2023,146:121-130.
[28] Zhang J J, Zhang B, Xie X B, et al. Recent advances in the nanoconfinement of Mg-related hydrogen storage materials:A minor review[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(1):14-24.
[29] Lu C, Panda S, Zhu W, et al. Enhanced hydrogen sorption properties of uniformly dispersed Pd-decorated three-dimensional(3D)Mg@Pd architecture[J]. International Journal of Hydrogen Energy, 2024, 50:979-989.
[30] Chen Y S, Guo J J, Liu P B, et al. Highly symmetrical B12@Mg20C12 with icosahedral B12 motif:A potential hydrogen storage medium[J]. Results in Physics, 2023, 48:106390.
[31] Li Y, Zhang Q, Ren L, et al. Core-shell nanostructured magnesium-based hydrogen storage materials:A critical review[J]. Industrial Chemistry&Materials, 2023, 1(3):282-298.
[32] Myers W R, Wang L W, Richardson T J, et al. Calculation of thermodynamic, electronic, and optical properties of monoclinic Mg2NiH4[J]. Journal of Applied Physics,2002, 91(8):4879-4885.
[33] Ma Z, Huang Z, Li Z, et al. Insights into thermodynamic destabilization in Mg-In-D hydrogen storage system:A combined synchrotron X-ray and neutron diffraction study[J]. Energy Storage Materials, 2023, 56:432-442.
[34] Cao W C, Ding X, Chen R R, et al. In-situ precipitation of ultrafine Mg2Ni particles in Mg-Ni-Ag metal fibers and their hydrogen storage properties[J]. Chemical Engineering Journal, 2023, 475:146252.
[35] Zhou H, Ding Z, Chen Y A, et al. Enhancement of hydrogen storage properties from amorphous Mg85Ni5Y10 alloy[J]. Journal of Non-Crystalline Solids, 2023, 605:122167.
[36] Zhao Y Y, Zhu Y F, Shi R, et al. Structural inhomogeneity:A potential strategy to improve the hydrogen storage performance of metal hydrides[J]. Journal of Materials Chemistry A, 2023, 11(25):13255-13265.
[37] Lin X, Yin C, Ren L, et al. A one-and three-dimensional coupled model and simulation investigation for the large-scale oil-heating type Mg-based hydrogen storage tank[J]. Chemical Engineering Journal, 2023,472:144943.
[38] Chang H, Tao Y B, Ye H. Numerical study on hydrogen and thermal storage performance of a sandwich reaction bed filled with metal hydride and thermochemical material[J]. International Journal of Hydrogen Energy, 2023,48(52):20006-20019.
[39] Babu K S, Kumar E A, Murthy S S. Thermochemical energy storage using coupled metal hydride beds of MgLaNi5 composites and LaNi5 based hydrides for concentrated solar power plants[J]. Applied Thermal Engineering, 2023, 219:119521.
[40] Mellouli S, Alqahtani T, Askri F, et al. Parametric assessment of a hybrid heat storage unit based on paired metal hydrides and phase change materials[J]. Applied Thermal Engineering, 2023, 226:120257.
[41] Alqahtani T. Performance evaluation of a solar thermal storage system proposed for concentrated solar power plants[J]. Applied Thermal Engineering, 2023, 229:120665.
[42] Kim Y, Dong X, Chae S, et al. Ultrahigh-porosity MgO microparticles for heat-energy storage[J]. Advanced Materials, 2023, 35(43):2204775.
文章导航

/