[1] Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523):1460-1463.
[2] Madsen L S, Laudenbach F, Askarani M F, et al. Quantum computational advantage with a programmable photonic processor[J]. Nature, 2022, 606:75-81.
[3] Gong M, Wang S Y, Zha C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor[J]. Science, 2021, 372(6545):948-952.
[4] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343):1140-1144.
[5] Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549:70-73.
[6] Bothwell T, Kennedy C J, Aeppli A, et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 2022, 602:420-424.
[7] Pompili M, Hermans S L N, Baier S, et al. Realization of a multinode quantum network of remote solid-state qubits[J]. Science, 2021, 372(6539):259-264.
[8] Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit[J]. Nature, 2023, 614:676-681.
[9] Cao S, Wu B, Chen F, et al. Generation of genuine entanglement up to 51 superconducting qubits[J]. Nature, 2023,619:738-742.
[10] Ni Z, Li S, Deng X, et al. Beating the break-even point with a discrete-variable-encoded logical qubit[J]. Nature, 2023, 616:56-60.
[11] Sivak V V, Eickbusch A, Royer B, et al. Real-time quantum error correction beyond break-even[J]. Nature,2023, 616:50-55.
[12] Kim Y, Eddins A, Anand S, et al. Evidence for the utility of quantum computing before fault tolerance[J]. Nature, 2023, 618:500-505.
[13] Zhang X, Kim E, Mark D K, et al. A superconducting quantum simulator based on a photonic-bandgap metamaterial[J]. Science, 2023, 379(6629):278-283.
[14] Google Quantum AI and Collaborators. Non-Abelian braiding of graph vertices in a superconducting processor[J]. Nature, 2023, 618:264-269.
[15] Layden D, Mazzola G, Mishmash R V, et al. Quantumenhanced Markov chain Monte Carlo[J]. Nature, 2023,619:282-287.
[16] Hirthe S, Chalopin T, Bourgund D, et al. Magnetically mediated hole pairing in fermionic ladders of ultracold atoms[J]. Nature, 2023, 613:463-467.
[17] Singh K, Bradley C E, Anand S, et al. Mid-circuit correction of correlated phase errors using an array of spectator qubits[J]. Science, 2023, 380(6651):1265-1269.
[18] Xu M, Kendrick L H, Kale A, et al. Frustration-and doping-induced magnetism in a Fermi-Hubbard simulator[J]. Nature, 2023, 620:971-976.
[19] Zhou T W, Cappellini G, Tusi D, et al. Observation of universal Hall response in strongly interacting Fermions[J]. Science, 2023, 381(6656):427-430.
[20] Bluvstein D, Evered S J, Geim A A, et al. Logical quantum processor based on reconfigurable atom arrays[J].Nature, 2023, 2023:1-3.
[21] Feng L, Katz O, Haack C, et al. Continuous symmetry breaking in a trapped-ion spin chain[J]. Nature, 2023,623:713-717.
[22] Joshi M K, Kokail C, van Bijnen R, et al. Exploring large-scale entanglement in quantum simulation[J]. Nature, 2023, 624:539-544.
[23] Moses S A, Baldwin C H, Allman M S, et al. A racetrack trapped-ion quantum processor[J]. Physical Review X, 2023, 13:041052.
[24] Li W, Zhang L, Tan H, et al. High-rate quantum key distribution exceeding 110 Mb·s-1[J]. Nature Photonics,2023, 17:416-421.
[25] Grünenfelder F, Boaron A, Resta G V, et al. Fast singlephoton detectors and real-time key distillation enable high secret-key-rate quantum key distribution systems[J]. Nature Photonics, 2023, 17:422-426.
[26] Ourari S, DusanowskiŁ, Horvath S P, et al. Indistinguishable telecom band photons from a single Er ion in the solid state[J]. Nature, 2023, 620:977-981.
[27] Kumar A, Suleymanzade A, Stone M, et al. Quantum-enabled millimetre wave to optical transduction using neutral atoms[J]. Nature, 2023, 615:614-619.
[28] Sahu R, Qiu L, Hease W, et al. Entangling microwaves with light[J]. Science, 2023, 380(6646):718-721.
[29] Zheng Y, Zhai C, Liu D, et al. Multichip multidimensional quantum networks with entanglement retrievability[J].Science, 2023, 381(6654):221-226.
[30] Krutyanskiy V, Canteri M, Meraner M, et al. Telecomwavelength quantum repeater node based on a trappedion processor[J]. Physical Review Letters, 2023, 130(21):213601.
[31] Xia Y, Agrawal A R, Pluchar C M, et al. Entanglementenhanced optomechanical sensing[J]. Nature Photonics,2023, 17:470-477.
[32] Yin P, Zhao X, Yang Y, et al. Experimental superHeisenberg quantum metrology with indefinite gate order[J]. Nature Physics, 2023, 19:1122-1127.
[33] Franke J, Muleady S R, Kaubruegger R, et al. Quantumenhanced sensing on optical transitions through finiterange interactions[J]. Nature, 2023, 621:740-745.
[34] Mao T W, Liu Q, Li X W, et al. Quantum-enhanced sensing by echoing spin-nematic squeezing in atomic Bose-Einstein condensate[J]. Nature Physics, 2023, 19:1585-1590.
[35] Assouly R, Dassonneville R, Peronnin T, et al. Quantum advantage in microwave quantum radar[J]. Nature Physics, 2023, 19:1418-1422.
[36] Wang J F, Liu L, Liu X D, et al. Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide[J]. Nature Materials, 2023, 22:489-494.
[37] Li Z, Colombo S, Shu C, et al. Improving metrology with quantum scrambling[J]. Science, 2023, 380(6652):1831-1834.
[38] Safadi M, Lib O, Lin H C, et al. Coherent backscattering of entangled photon pairs[J]. Nature Physics, 2023, 19:562-568.
[39] Lami L, Regula B. No second law of entanglement manipulation after all[J]. Nature Physics, 2023, 19:184-189.
[40] Movassagh R. The hardness of random quantum circuits[J]. Nature Physics, 2023, 19:1719-1724.
[41] Koh J M, Sun S N, Motta M, et al. Measurement-induced entanglement phase transition on a superconducting quantum processor with mid-circuit readout[J]. Nature Physics, 2023, 19:1314-1319.
[42] Ye G S, Xu B, Chang Y, et al. A photonic entanglement filter with Rydberg atoms[J]. Nature Photonics, 2023,17:538-543.
[43] Bao Y, Yu S S, Anderegg L, et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array[J]. Science, 2023, 382(6675):1138-1143.
[44] Holland C M, Lu Y, Cheuk L W. On-demand entanglement of molecules in a reconfigurable optical tweezer array[J]. Science, 2023, 382(6675):1143-1147.
[45] ŠupićI, Bowles J, Renou M O, et al. Quantum networks self-test all entangled states[J]. Nature Physics, 2023,19:670-675.