专题:2023年科技热点回眸

2023年量子信息热点回眸

  • 李传锋
展开
  • 中国科学技术大学物理学院; 中国科学技术大学中国科学院量子信息重点实验室, 合肥 230026
李传锋,教授,研究方向为量子光学与量子信息,电子信箱:cfli@ustc.edu.cn

收稿日期: 2023-12-31

  修回日期: 2024-01-09

  网络出版日期: 2024-04-09

基金资助

国家自然科学基金项目(11821404)

Memorable sounds of quantum information in 2023

  • LI Chuanfeng
Expand
  • School of Physical Sciences, University of Science and Technology of China;CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China

Received date: 2023-12-31

  Revised date: 2024-01-09

  Online published: 2024-04-09

摘要

回顾了量子信息领域在2023年的重大进展,盘点了量子计算与量子模拟、量子通信与量子网络、量子精密测量和量子信息物理等量子信息研究领域的研究热点。量子信息的发展会带来物理上安全的通信、高效的信息处理和精密的测量等,对国家信息安全及人类生产生活方式产生重大影响。

本文引用格式

李传锋 . 2023年量子信息热点回眸[J]. 科技导报, 2024 , 42(1) : 245 -265 . DOI: 10.3981/j.issn.1000-7857.2024.01.016

Abstract

This article reviews the major advances in the field of quantum information in 2023, and checks out the research hotspots in the field of quantum information research, such as quantum computing and quantum simulation, quantum communication and quantum networks, quantum precision measurement, and quantum information physics. The development of quantum information will lead to physically-secure communications, efficient information processing, precision measurements,etc., which will have a significant impact on national information security and human production and lifestyle.

参考文献

[1] Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523):1460-1463.
[2] Madsen L S, Laudenbach F, Askarani M F, et al. Quantum computational advantage with a programmable photonic processor[J]. Nature, 2022, 606:75-81.
[3] Gong M, Wang S Y, Zha C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor[J]. Science, 2021, 372(6545):948-952.
[4] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343):1140-1144.
[5] Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549:70-73.
[6] Bothwell T, Kennedy C J, Aeppli A, et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 2022, 602:420-424.
[7] Pompili M, Hermans S L N, Baier S, et al. Realization of a multinode quantum network of remote solid-state qubits[J]. Science, 2021, 372(6539):259-264.
[8] Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit[J]. Nature, 2023, 614:676-681.
[9] Cao S, Wu B, Chen F, et al. Generation of genuine entanglement up to 51 superconducting qubits[J]. Nature, 2023,619:738-742.
[10] Ni Z, Li S, Deng X, et al. Beating the break-even point with a discrete-variable-encoded logical qubit[J]. Nature, 2023, 616:56-60.
[11] Sivak V V, Eickbusch A, Royer B, et al. Real-time quantum error correction beyond break-even[J]. Nature,2023, 616:50-55.
[12] Kim Y, Eddins A, Anand S, et al. Evidence for the utility of quantum computing before fault tolerance[J]. Nature, 2023, 618:500-505.
[13] Zhang X, Kim E, Mark D K, et al. A superconducting quantum simulator based on a photonic-bandgap metamaterial[J]. Science, 2023, 379(6629):278-283.
[14] Google Quantum AI and Collaborators. Non-Abelian braiding of graph vertices in a superconducting processor[J]. Nature, 2023, 618:264-269.
[15] Layden D, Mazzola G, Mishmash R V, et al. Quantumenhanced Markov chain Monte Carlo[J]. Nature, 2023,619:282-287.
[16] Hirthe S, Chalopin T, Bourgund D, et al. Magnetically mediated hole pairing in fermionic ladders of ultracold atoms[J]. Nature, 2023, 613:463-467.
[17] Singh K, Bradley C E, Anand S, et al. Mid-circuit correction of correlated phase errors using an array of spectator qubits[J]. Science, 2023, 380(6651):1265-1269.
[18] Xu M, Kendrick L H, Kale A, et al. Frustration-and doping-induced magnetism in a Fermi-Hubbard simulator[J]. Nature, 2023, 620:971-976.
[19] Zhou T W, Cappellini G, Tusi D, et al. Observation of universal Hall response in strongly interacting Fermions[J]. Science, 2023, 381(6656):427-430.
[20] Bluvstein D, Evered S J, Geim A A, et al. Logical quantum processor based on reconfigurable atom arrays[J].Nature, 2023, 2023:1-3.
[21] Feng L, Katz O, Haack C, et al. Continuous symmetry breaking in a trapped-ion spin chain[J]. Nature, 2023,623:713-717.
[22] Joshi M K, Kokail C, van Bijnen R, et al. Exploring large-scale entanglement in quantum simulation[J]. Nature, 2023, 624:539-544.
[23] Moses S A, Baldwin C H, Allman M S, et al. A racetrack trapped-ion quantum processor[J]. Physical Review X, 2023, 13:041052.
[24] Li W, Zhang L, Tan H, et al. High-rate quantum key distribution exceeding 110 Mb·s-1[J]. Nature Photonics,2023, 17:416-421.
[25] Grünenfelder F, Boaron A, Resta G V, et al. Fast singlephoton detectors and real-time key distillation enable high secret-key-rate quantum key distribution systems[J]. Nature Photonics, 2023, 17:422-426.
[26] Ourari S, DusanowskiŁ, Horvath S P, et al. Indistinguishable telecom band photons from a single Er ion in the solid state[J]. Nature, 2023, 620:977-981.
[27] Kumar A, Suleymanzade A, Stone M, et al. Quantum-enabled millimetre wave to optical transduction using neutral atoms[J]. Nature, 2023, 615:614-619.
[28] Sahu R, Qiu L, Hease W, et al. Entangling microwaves with light[J]. Science, 2023, 380(6646):718-721.
[29] Zheng Y, Zhai C, Liu D, et al. Multichip multidimensional quantum networks with entanglement retrievability[J].Science, 2023, 381(6654):221-226.
[30] Krutyanskiy V, Canteri M, Meraner M, et al. Telecomwavelength quantum repeater node based on a trappedion processor[J]. Physical Review Letters, 2023, 130(21):213601.
[31] Xia Y, Agrawal A R, Pluchar C M, et al. Entanglementenhanced optomechanical sensing[J]. Nature Photonics,2023, 17:470-477.
[32] Yin P, Zhao X, Yang Y, et al. Experimental superHeisenberg quantum metrology with indefinite gate order[J]. Nature Physics, 2023, 19:1122-1127.
[33] Franke J, Muleady S R, Kaubruegger R, et al. Quantumenhanced sensing on optical transitions through finiterange interactions[J]. Nature, 2023, 621:740-745.
[34] Mao T W, Liu Q, Li X W, et al. Quantum-enhanced sensing by echoing spin-nematic squeezing in atomic Bose-Einstein condensate[J]. Nature Physics, 2023, 19:1585-1590.
[35] Assouly R, Dassonneville R, Peronnin T, et al. Quantum advantage in microwave quantum radar[J]. Nature Physics, 2023, 19:1418-1422.
[36] Wang J F, Liu L, Liu X D, et al. Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide[J]. Nature Materials, 2023, 22:489-494.
[37] Li Z, Colombo S, Shu C, et al. Improving metrology with quantum scrambling[J]. Science, 2023, 380(6652):1831-1834.
[38] Safadi M, Lib O, Lin H C, et al. Coherent backscattering of entangled photon pairs[J]. Nature Physics, 2023, 19:562-568.
[39] Lami L, Regula B. No second law of entanglement manipulation after all[J]. Nature Physics, 2023, 19:184-189.
[40] Movassagh R. The hardness of random quantum circuits[J]. Nature Physics, 2023, 19:1719-1724.
[41] Koh J M, Sun S N, Motta M, et al. Measurement-induced entanglement phase transition on a superconducting quantum processor with mid-circuit readout[J]. Nature Physics, 2023, 19:1314-1319.
[42] Ye G S, Xu B, Chang Y, et al. A photonic entanglement filter with Rydberg atoms[J]. Nature Photonics, 2023,17:538-543.
[43] Bao Y, Yu S S, Anderegg L, et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array[J]. Science, 2023, 382(6675):1138-1143.
[44] Holland C M, Lu Y, Cheuk L W. On-demand entanglement of molecules in a reconfigurable optical tweezer array[J]. Science, 2023, 382(6675):1143-1147.
[45] ŠupićI, Bowles J, Renou M O, et al. Quantum networks self-test all entangled states[J]. Nature Physics, 2023,19:670-675.
文章导航

/