专题:2023年科技热点回眸

2023年全同态加密研究热点回眸

  • 范瑞琦 ,
  • 陈铭志 ,
  • 牛鑫丽 ,
  • 董文阔 ,
  • 李晓霖 ,
  • 刘硕 ,
  • 刘静 ,
  • 赵明 ,
  • 蔡嘉跃 ,
  • 闫闱 ,
  • 朱树永 ,
  • 郑珂威 ,
  • 徐鹏 ,
  • 郝沁汾 ,
  • 孙凝晖
展开
  • 1. 中国科学院计算技术研究所, 北京 100086;
    2. 无锡芯光同态科技有限公司, 无锡 214104;
    3. 无锡芯光互连技术研究院有限公司, 无锡 214104;
    4. 华中科技大学网络空间安全学院, 武汉 430074
范瑞琦,博士研究生,研究方向为计算机体系结构与安全,电子信箱:fanruiqi20g@ict.ac.cn

收稿日期: 2023-12-31

  修回日期: 2024-01-08

  网络出版日期: 2024-04-09

Annual review of advances of full homomorphic encryption technology

  • FAN Ruiqi ,
  • CHEN Mingzhi ,
  • NIU Xinli ,
  • DONG Wenkuo ,
  • LI Xiaolin ,
  • LIU Shuo ,
  • LIU Jing ,
  • ZHAO Ming ,
  • CAI Jiayue ,
  • YAN Wei ,
  • ZHU Shuyong ,
  • ZHENG Kewei ,
  • XU Peng ,
  • HAO Qinfen ,
  • SUN Ninghui
Expand
  • 1. Institute of Computing Technology, Chinese Academy of Science, Beijing 100086, China;
    2. Wuxi Xingguangtongtai LTD., Wuxi 214104, China;
    3. Wuxi Institute of Integrate Chip and Interconnect Technology, Wuxi 214104, China;
    4. School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2023-12-31

  Revised date: 2024-01-08

  Online published: 2024-04-09

摘要

在大数据和人工智能时代,全同态加密方法被公认为是解决数据安全与隐私泄露问题的理想技术,但目前存在计算效率差、密文膨胀等问题,严重影响了全同态加密技术的应用和推广。从针对全同态加密算法的硬件加速和围绕全同态加密算法的优化2个方面,回顾了2023年计算机体系结构与密码学相关研究进展:以专用集成电路技术路线为代表的硬件加速效果明显;从算法角度进行优化,进展显著。可以预测,未来几年内,同态加密将与人工智能技术相结合,在跨行业、行业总分机构数据协作和利用中发挥更多价值。

本文引用格式

范瑞琦 , 陈铭志 , 牛鑫丽 , 董文阔 , 李晓霖 , 刘硕 , 刘静 , 赵明 , 蔡嘉跃 , 闫闱 , 朱树永 , 郑珂威 , 徐鹏 , 郝沁汾 , 孙凝晖 . 2023年全同态加密研究热点回眸[J]. 科技导报, 2024 , 42(1) : 286 -295 . DOI: 10.3981/j.issn.1000-7857.2024.01.018

Abstract

In the era of big data and artificial intelligence, homomorphic encryption methods are widely recognized as an ideal technology to solve data security and privacy leakage problems. However, there are currently issues such as poor computational efficiency and ciphertext inflation, which seriously affect application and promotion of this technology. On the basis of summarizing the current research status, this paper reviews and analyzes the relevant research progress in 2023 from two aspects:hardware acceleration for homomorphic encryption algorithms and optimization of homomorphic encryption algorithms. Significant acceleration effects are attributed to the dedicated integrated circuit technology route; substantial progress has been made in optimization from the algorithm perspective. It can be predicted that in the next few years homomorphic encryption will be combined with artificial intelligence to deliver more value in cross-industry and industry division data collaboration and utilization.

参考文献

[1] Freitas L, Tonkikh A, Bendoukha A A, et al. Single secret leader election for PoS blockchains[EB/OL].(2023-01-30)[2024-01-13]. https://eprint.iacr.org/2023/113.
[2] Cong K, Das D, Nicolas G, et al. Panacea:Non-interactive and stateless oblivious RAM[EB/OL].(2023-06-12)[2024-01-13]. https://eprint.iacr.org/2023/274.
[3] Charles G, Joseph V, Dalton S, et al. Accelerated encrypted execution of general-purpose applications[EB/OL].(2023-05-12)[2024-01-13]. https://eprint.iacr.org/2023/641.
[4] Lam K Y, Lu X, Zhang L, et al. Efficient FHE-based privacy-enhanced neural network for AI-as-a-service[EB/OL].(2023-05-08)[2024-01-13]. https://eprint.iacr.org/2023/647.
[5] Cheon J H, Kang M, Kim T, et al. High-throughput deep convolutional neural networks on fully homomorphic encryption using channel-by-channel packing[EB/OL].(2023-05-04)[2024-01-13]. https://eprint.iacr.org/2023/647.
[6] Song B. High-throughput deep convolutional neural networks on fully homomorphic encryption using channelby-channel packing[C]//CCS'23:Proceedings of the 2023ACM SIGSAC Conference on Computer and Communications Security. Copenhagen, Denmark:ACM, 2023:2930-2944.
[7] Kim L. Microsoft/SEAL[EB/OL].(2023-01-11)[2024-01-13]. https://github.com/microsoft/SEAL.
[8] Cheon J H, Cho W, Kim J, et al. Homomorphic multiple precision multiplication for CKKS and reduced modulus consumption[C]//Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security.Copenhagen, Denmark:ACM, 2023:696-710.
[9] Mouchet C V. Lattigo:A multiparty homomorphic encryption library in go[C]//Proceedings of the 8th Workshop on Encrypted Computing and Applied Homomorphic Cryptography. Online:Homomorphic Encryption. org Consortium,2020:64-70.
[10] Samardzic N, Feldmann A, Krastev A, et al. F1:A fast and programmable accelerator for fully homomorphic encryption[C]//MICRO-54:54th Annual IEEE/ACM International Symposium on Microarchitecture. Virtual Event Greece:ACM, 2021:238-252.
[11] Kim S, Kim J, Kim M J, et al. BTS:An accelerator for bootstrappable fully homomorphic encryption[C]//Proceedings of the 49th Annual International Symposium on Computer Architecture. New York:ACM, 2022:711-725.
[12] Samardzic N, Feldmann A, Krastev A, et al. CraterLake:A hardware accelerator for efficient unbounded computation on encrypted data[C]//Proceedings of the 49th Annual International Symposium on Computer Architecture.New York:ACM, 2022:173-187.
[13] Kim J, Lee G, Kim S, et al. ARK:Fully homomorphic encryption accelerator with runtime data generation and inter-operation key reuse[C]//2022 55th IEEE/ACM International Symposium on Microarchitecture(MICRO).Chicago:IEEE, 2022:1237-1254.
[14] Jung W, Kim S, Ahn J H, et al. Over 100x faster bootstrapping in fully homomorphic encryption through memory-centric optimization with gpus[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021(4):114-148.
[15] Kim J, Kim S, Choi J, et al. SHARP:A short-word hierarchical accelerator for robust and practical fully homomorphic encryption[C]//Proceedings of the 50th Annual International Symposium on Computer Architecture. Orlando:ACM, 2023:1-15.
[16] Agrawal R, De Castro L, Juvekar C, et al. MAD:Memory-aware design techniques for accelerating fully homomorphic encryption[C]//56th Annual IEEE/ACM International Symposium on Microarchitecture. Toronto:ACM,2023:13.
[17] Fan S Y, Wang Z W, Xu W Z, et al. TensorFHE:Achieving practical computation on encrypted data using GPGPU[C]//2023 IEEE International Symposium on High-Performance Computer Architecture(HPCA). Montreal:IEEE, 2023:922-934.
[18] Shivdikar K, Bao Y H, Agrawal R, et al. GME:GPUbased microarchitectural extensions to accelerate homomorphic encryption[C]//56th Annual IEEE/ACM International Symposium on Microarchitecture. Toronto:ACM,2023:670-684.
[19] Yang Y H, Zhang H Z, Fan S Y, et al. Poseidon:Practical homomorphic encryption accelerator[C]//2023 IEEE International Symposium on High-Performance Computer Architecture(HPCA). Montreal:IEEE, 2023:870-881.
[20] Agrawal R, De Castro L, Yang G W, et al. FAB:An FPGA-based accelerator for bootstrappable fully homomorphic encryption[C]//2023 IEEE International Symposium on High-Performance Computer Architecture(HPCA).Montreal:IEEE, 2023:882-895.
[21] Guimarães A, Pereira H V L, Van Leeuwen B. Amortized bootstrapping revisited:Simpler, asymptoticallyfaster, implemented[C]//Advances in Cryptology-ASIACRYPT 2023:29th International Conference on the Theory and Application of Cryptology and Information Security,Guangzhou, China, December 4-8, 2023, Proceedings,Part VI. Guangzhou:ACM, 2023:3-35.
[22] Lee Y, Micciancio D, Kim A, et al. Efficient FHEW bootstrapping with small evaluation keys, and applications to threshold homomorphic encryption[EB/OL].(2023-06-10)[2024-01-13]. https://eprint.iacr.org/2022/198.
[23] Liu Z Y, Wang Y H. Amortized functional bootstrapping inLess than 7 ms, withÕ(1)polynomial multiplications[C]//Advances in Cryptology-ASIACRYPT 2023:29th International Conference on the Theory and Application of Cryptology and Information Security, Guangzhou, China, December 4-8, 2023, Proceedings, Part VI. Guangzhou:ACM, 2023:101-132.
[24] Liu Z, Micciancio D, Polyakov Y. Large-precision homomorphic sign evaluation using fhew/tfhe bootstrapping.In Advances in Cryptology[C]//ASIACRYPT 2022:28th International Conference on the Theory and Application of Cryptology and Information Security. Taipei:Springer,2023:130-160.
[25] Kluczniak K, Schild L. FDFB:Full domain functional bootstrapping towards practical fully homomorphic encryption[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023, 2023(1):501-537.
[26] Guimares A, Borin E, Aranha D F. Revisiting the functional bootstrap in TFHE[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021(2):229-253.
[27] Liu K, Xu C G, Dou B N, et al. Optimization of functional bootstrap with large lut and packing key switching[EB/OL].(2023-07-26)[2024-01-13]. https://eprint.iacr.org/2023/631.
[28] Lu W, Huang Z, Hong C, et al. Pegasus:Bridging polynomial and non-polynomial evaluations in homomorphic encryption[C]//42nd IEEE Symposium on Security and Privacy(SP 2021). Online:IEEE, 2021:1057-1073.
[29] Kim M, Lee D, Seo J, et al. Accelerating HE operations from Key decomposition technique[M]//Advances in Cryptology-CRYPTO 2023. Cham:Springer Nature Switzerland, 2023:70-92.
[30] Han K, Ki D. Better bootstrapping for approximate homomorphic encryption[M]//Topics in Cryptology-CT-RSA2020. Cham:Springer International Publishing, 2020:364-390.
[31] Joon W L. Rotation key reduction for client-server systems of deep neural network on fully homomorphic encryption[C]//The 29th Annual International Conference on the Theory and Applications of Cryptology and Information Security(ASIACRYPT 2023). Guangzhou, China:IACR, 2023:36-68.
[32] Lee E. Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions[C]//International Conference on Machine Learning(ICML 2022). Baltimore, USA:Curran Associates, 2022:12403-12422.
[33] Binwu X. Fast blind rotation for ebootstrapping FHEs[C]//2023 International Cryptology Conference(CRYPTO2023). Santa Barbara, USA:Springer, 2023:3-36.
[34] Ducas L. FHEW:Bootstrapping homomorphic encryption in less than a second[C]//Advances in Cryptology-EUROCRYPT 2015-34th Annual International Conference on the Theory and Applications of Cryptographic Techniques(EUROCRYPT 2015). Sofia, Bulgaria:Springer,2015:617-640.
[35] Chillotti I, Gama N, Georgieva M, et al. TFHE:Fast fully homomorphic encryption over the torus[J]. Journal of Cryptology, 2020, 33(1):34-91.
[36] Okada H, Player R, Pohmann S. Homomorphic polynomial evaluation using Galois structure and applications to BFV bootstrapping[C]//The 29th Annual International Conference on the Theory and Applications of Cryptology and Information Security(ASIACRYPT 2023). Guangzhou, China:IACR, 2023:69-100.
[37] Hao C. Homomorphic lower digits removal and improved fhe bootstrapping[C]//Advances in Cryptology-EUROCRYPT 2018-37th Annual International Conference on the Theory and Applications of Cryptographic Techniques(EUROCRYPT 2018). Tel Aviv, Israel:Springer,2018:315-337.
[38] Geelen R, Iliashenko I, Kang J Y, et al. On Polynomial Functions Modulo and faster bootstrapping for homomorphic encryption[C]//Advances in Cryptology-EUROCRYPT 2023-42th Annual International Conference on the Theory and Applications of Cryptographic Techniques(EUROCRYPT 2023). Lyon, France:Springer,2023:257-286.
[39] 无锡芯光同态信息科技有限公司.十年磨剑,一朝试锋!首个基于高效密文算法的机器学习产品“御龙”全新发布[EB/OL].(2023-11-07)[2024-01-14]. https://mp.weixin.qq.com/s/5T3KukovQVFhj69HUKQjyA.
文章导航

/