专题:芯片前沿技术

忆阻器及其存算一体应用研究进展

  • 江之行 ,
  • 席悦 ,
  • 唐建石 ,
  • 高滨 ,
  • 钱鹤 ,
  • 吴华强
展开
  • 清华大学集成电路学院, 集成电路高精尖创新中心, 北京 100084
江之行,博士研究生,研究方向为新型存储器,电子信箱:jiangzx22@mails.tsing.edu,cn

收稿日期: 2022-09-02

  修回日期: 2023-01-12

  网络出版日期: 2024-04-15

基金资助

科技部重大项目(2021ZD0201205,2022ZD0210200);国家自然科学基金委重点项目(92264201,92064001)

Review of recent research on memristors and computing-in-memory applications

  • JIANG Zhixing ,
  • XI Yue ,
  • TANG Jianshi ,
  • GAO Bin ,
  • QIAN He ,
  • WU Huaqiang
Expand
  • School of Integrated Circuits, Beijing Advanced Innovation Center for Integrated Circuits, Tsinghua University, Beijing 100084, China

Received date: 2022-09-02

  Revised date: 2023-01-12

  Online published: 2024-04-15

摘要

深度学习的飞速发展带来了巨大的算力需求,然而基于存算分离的“冯·诺依曼架构”的传统硅基芯片面临着“存储墙”等问题,芯片算力增长逐渐陷入瓶颈。为了解决这个矛盾,研究人员从生物大脑的工作模式得到启发,提出了基于忆阻器的存算一体架构。这种全新的架构在处理神经网络等任务时在能效和速度上较“冯·诺依曼架构”有望实现几个数量级的提升,是实现超低功耗、超高算力计算芯片的最有潜力的技术路线之一。本文综述了各种类型忆阻器的工作机理与最新进展,对比了国内外研究团队的器件研究进展;综述了基于忆阻器的存算一体芯片在神经网络、信号处理和机器学习等方向的应用演示的研究进展;总结了基于忆阻器的存算一体芯片目前面临的挑战,并提出中国在该领域进一步发展的建议。

本文引用格式

江之行 , 席悦 , 唐建石 , 高滨 , 钱鹤 , 吴华强 . 忆阻器及其存算一体应用研究进展[J]. 科技导报, 2024 , 42(2) : 31 -49 . DOI: 10.3981/j.issn.1000-7857.2024.02.004

Abstract

The rapid development of deep learning raises a massive demand for computing power. However, traditional siliconbased chips based on the von Neumann architecture with physically separated memory and computing units, are facing critical issues such as the "memory wall", and hence the increase of chip computing power is gradually hitting a bottleneck. To address this problem, researchers have been inspired by the working mechanism of biological brain and proposed a computing-inmemory architecture based on memristors. This novel architecture is expected to achieve several orders of magnitude improvement in energy efficiency and speed over the von Neumann architecture for tasks such as artificial neural networks. It is one of the most promising technologies to achieve ultra-low power consumption and ultra-high computing power. This article first reviews the working mechanisms of various types of memristors, and summarizes the latest device research internationally. Then, the progress on application demonstrations of memristor-based computing-in-memory chips such as neural networks, signal processing, and machine learning are reviewed. The current challenges in this field and further research directions are concluded in the end.

参考文献

[1] Abiodun O I, Jantan A, Omolara A E, et al. State-of-theart in artificial neural network applications:A survey[J]. Heliyon, 2018, 4(11):e00938.
[2] Tavanaei A, Ghodrati M, Kheradpisheh S R, et al. Deep learning in spiking neural networks[J]. Neural Networks, 2019, 111:47-63.
[3] Le Cun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[4] Dario A, Danny H. AI and Compute[EB/OL]. (2018-05-16)[2022-04-28]. https://openai.com/blog/ai-and-compute/.
[5] Moore G E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE, 1998, 86(1):82-85.
[6] Patterson D. 50 Years of computer architecture:From the mainframe CPU to the domain-specific tpu and the open RISC-V instruction set[C]//2018 IEEE International Solid -State Circuits Conference(ISSCC). Piscataway, NJ:IEEE, 2018:27-31.
[7] Lundstrom M. Moore's Law forever[J]. Science, 2003, 299(5604):210-211.
[8] Chau R, Doyle B, Datta S, et al. Integrated nanoelectronics for the future[J]. Nature Materials, 2007, 6(11):810-812.
[9] Leiserson C E, Thompson N C, Emer J S, et al. There's plenty of room at the Top:What will drive computer performance after Moore's law[J]. Science, 2020, 368(6495):eaam9744.
[10] Salahuddin S, Ni K, Datta S. The era of hyper-scaling in electronics[J]. Nature Electronics, 2018, 1(8):442-450.
[11] McKee S A. Reflections on the memory wall[C]//Proceedings of the 1st conference on Computing frontiers. New York:Association for Computing Machinery, 2004:162.
[12] Wong H-S P, Salahuddin S. Memory leads the way to better computing[J]. Nature Nanotechnology, 2015, 10(3):191-194.
[13] Qureshi M K, Gurumurthi S, Rajendran B. Phase change memory:From devices to systems[J]. Synthesis Lectures on Computer Architecture, 2011, 6(4):1-134.
[14] Furber S. Large-scale neuromorphic computing systems[J]. Journal of Neural Engineering, 2016, 13(5):051001.
[15] Indiveri G, Liu S C. Memory and information processing in neuromorphic systems[J]. Proceedings of the IEEE, 2015, 103(8):1379-1397.
[16] Hu M, Strachan J P, Li Z, et al. Dot-product engine as computing memory to accelerate machine learning algorithms[C]//2016 17th International Symposium on Quality Electronic Design (ISQED). Piscataway, NJ:IEEE, 2016:374-379.
[17] Chua L. Memristor-The missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5):507-519.
[18] Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191):80-83.
[19] Zhao M R, Wu H Q, Gao B, et al. Investigation of statistical retention of filamentary analog RRAM for neuromophic computing[C]//2017 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2017:39.4.1-39.4.4.
[20] Wu Y, Yu S M, Guan X M, et al. Recent progress of resistive switching random access memory (RRAM)[C]//2012 IEEE Silicon Nanoelectronics Workshop (SNW). Piscataway, NJ:IEEE, 2012:1-4.
[21] Prezioso M, Merrikh-Bayat F, Hoskins B D, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors[J]. Nature, 2015, 521(7550):61-64.
[22] Ielmini D, Wang Z, Liu Y. Brain-inspired computing via memory device physics[J]. APL Materials, 2021, 9(5):050702.
[23] Kumar S, Wang X, Strachan J P, et al. Dynamical memristors for higher-complexity neuromorphic computing[J]. Nature Reviews Materials, 2022, 7(7):575-591.
[24] Li X Y, Zhong Y N, Chen H, et al. A memristors-based dendritic neuron for high-efficiency spatial-temporal information processing[J]. Advanced Materials, 2022, doi:10.1002/adma.202203684.
[25] Li X Y, Tang J S, Zhang Q T, et al. Power-efficient neural network with artificial dendrites[J]. Nature Nanotechnology, 2020, 15(9):776-782.
[26] Sun W, Gao B, Chi M F, et al. Understanding memristive switching via in situ characterization and device modeling[J]. Nature Communications, 2019, 10(1):3453.
[27] Xu X X, Lv H B, Liu H T, et al. Superior retention of low-resistance state in conductive bridge random access memory with single filament formation[J]. IEEE Electron Device Letters, 2015, 36(2):129-131.
[28] Bersuker G, Veksler D, Nminibapiel D M, et al. Toward reliable RRAM performance:Macro-and micro-analysis of operation processes[J]. Journal of Computational Electronics, 2017, 16(4):1085-1094.
[29] Degraeve R, Fantini A, Gorine G, et al. Quantitative model for post-program instabilities in filamentary RRAM[C]//2016 IEEE International Reliability Physics Symposium (IRPS). Piscataway, NJ:IEEE, 2016:6C-1-1-6C-1-7.
[30] Gao B, Wu H Q, Wu W, et al. Modeling disorder effect of the oxygen vacancy distribution in filamentary analog RRAM for neuromorphic computing[C]//2017 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2017:4.4.1-4.4.4.
[31] Zhao Y D, Huang P, Chen Z, et al. Modeling and optimization of bilayered TaOx RRAM based on defect evolution and phase transition effects[J]. IEEE Transactions on Electron Devices, 2016, 63(4):1524-1532.
[32] Huang P, Liu X Y, Li W H, et al. A physical based analytic model of RRAM operation for circuit simulation[C]//2012 International Electron Devices Meeting. Piscataway, NJ:IEEE, 2012:26.6.1-26.6.4.
[33] Wong H-S P, Lee H Y, Yu S, et al. Metal-oxide RRAM[J]. Proceedings of the IEEE, 2012, 100(6):1951-1970.
[34] Misha S H, Tamanna N, Woo J, et al. Effect of nitrogen doping on variability of TaOx -RRAM for low-power 3-bit MLC applications[J]. ECS Solid State Letters, 2015, 4(3):25.
[35] Wu W, Wu H Q, Gao B, et al. Improving analog switching in HfO2-based resistive memory with a thermal enhanced layer[J]. IEEE Electron Device Letters, 2017, 38(8):1019-1022.
[36] Yao P, Wu H Q, Gao B, et al. Fully hardware-implemented memristor convolutional neural network[J]. Nature, 2020, 577(7792):641-646.
[37] Cai F, Correll J M, Lee S H, et al. A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations[J]. Nature Electronics, 2019, 2(7):290-299.
[38] Serb A, Bill J, Khiat A, et al. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses[J]. Nature Communications, 2016, 7(1):12611.
[39] Ahn M, Park Y, Lee S H, et al. Memristors based on (Zr, Hf, Nb, Ta, Mo, W) high-entropy oxides[J]. Advanced Electronic Materials, 2021, 7(5):2001258.
[40] Islam R, Li H, Chen P Y, et al. Device and materials requirements for neuromorphic computing[J]. Journal of Physics D:Applied Physics, 2019, 52(11):113001.
[41] Valov I, Waser R, Jameson J R, et al. Electrochemical metallization memories-fundamentals, applications, prospects[J]. Nanotechnology, 2011, 22(25):254003.
[42] Xia Q F, Yang J J. Memristive crossbar arrays for braininspired computing[J]. Nature Materials, 2019, 18(4):309-323.
[43] Lin Q, Li Y, Xu M, et al. Dual-Layer selector with excellent performance for cross-point memory applications[J]. IEEE Electron Device Letters, 2018, 39(4):496-499.
[44] Belmonte A, Reale G, Fantini A, et al. Effect of the switching layer on CBRAM reliability and benchmarking against OxRAM devices[J]. Solid-State Electronics, 2021, 184:108058.
[45] Hsu C-L, Saleem A, Singh A, et al. Enhanced linearity in CBRAM synapse by post oxide deposition annealing for neuromorphic computing applications[J]. IEEE Transactions on Electron Devices, 2021, 68(11):5578-5584.
[46] Raoux S, Xiong F, Wuttig M, et al. Phase change materials and phase change memory[J]. MRS Bulletin, 2014, 39(8):703-710.
[47] Wong H-S P, Raoux S, Kim S, et al. Phase change memory[J]. Proceedings of the IEEE, 2010, 98(12):2201-2227.
[48] Li Y B, Wang Z R, Midya R, et al. Review of memristor devices in neuromorphic computing:Materials sciences and device challenges[J]. Journal of Physics D:Applied Physics, 2018, 51(50):503002.
[49] Ahn C, Fong S W, Kim Y, et al. Energy-efficient phasechange memory with graphene as a thermal barrier[J]. Nano Letters, 2015, 15(10):6809-6814.
[50] Lacaita A L, Redaelli A. The race of phase change memories to nanoscale storage and applications[J]. Microelectronic Engineering, 2013, 109:351-356.
[51] Boniardi M, Ielmini D, Lavizzari S, et al. Statistics of resistance drift due to structural relaxation in phasechange memory arrays[J]. IEEE Transactions on Electron Devices, 2010, 57(10):2690-2696.
[52] Ding K Y, Wang J J, Zhou Y X, et al. Phase-change heterostructure enables ultralow noise and drift for memory operation[J]. Science, 2019, 366(6462):210-215.
[53] Park J H, Kim S W, Kim J H, et al. Enhancement of a cyclic endurance of phase change memory by application of a high-density C15(Ge21Sb36Te43) film[J]. AIP Advances, 2016, 6(2):025013.
[54] Na T, Kang S H, Jung S O. STT-MRAM sensing:A review[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(1):12-18.
[55] Kawahara T, Ito K, Takemura R, et al. Spin-transfer torque RAM technology:Review and prospect[J]. Microelectronics Reliability, 2012, 52(4):613-627.
[56] Worledge D C. Spin-Transfer-Torque MRAM:The next revolution in memory[C]//2022 IEEE International Memory Workshop (IMW). Piscataway, NJ:IEEE, 2022:1-4.
[57] Zhang K, Cao K H, Zhang Y, et al. Rectified tunnel magnetoresistance device with high on/off ratio for inmemory computing[J]. IEEE Electron Device Letters, 2020, 41(6):928-931.
[58] Garello K, Yasin F, Kar G S. Spin-Orbit torque MRAM for ultrafast embedded memories:From fundamentals to large scale technology integration[C]//2019 IEEE 11th International Memory Workshop (IMW). Piscataway, NJ:IEEE, 2019:1-4.
[59] Weisheit M, Fähler S, Marty A, et al. Electric field-induced modification of magnetism in thin-film ferromagnets[J]. Science, 2007, 315(5810):349-351.
[60] Nozaki T, Yamamoto T, Miwa S, et al. Recent progress in the voltage-controlled magnetic anisotropy effect and the challenges faced in developing voltage-torque MRAM[J]. Micromachines, 2019, 10(5):327.
[61] Chanthbouala A, Garcia V, Cherifi R O, et al. A ferroelectric memristor[J]. Nature Materials, 2012, 11(10):860-864.
[62] Schroeder U, Park M H, Mikolajick T, et al. The fundamentals and applications of ferroelectric HfO2[J]. Nature Reviews Materials, 2022, 7(3):653-669.
[63] Fuller E J, Keene S T, Melianas A, et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing[J]. Science, 2019, 364(6440):570-574.
[64] Valasek J. Piezo-Electric and allied phenomena in rochelle salt[J]. Physical Review, 1921, 17(4):475-481.
[65] Böscke T S, Müller J, Bräuhaus D, et al. Ferroelectricity in hafnium oxide thin films[J]. Applied Physics Letters, 2011, 99(10):102903.
[66] Fujii S, Kamimuta Y, Ino T, et al. First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property[C]//2016 IEEE Symposium on VLSI Technology. Piscataway, NJ:IEEE, 2016:1-2.
[67] Max B, Hoffmann M, Slesazeck S, et al. Ferroelectric tunnel junctions based on ferroelectric-dielectric Hf0.5Zr0.5O2/A12O3 capacitor stacks[C]//2018 48th European Solid-State Device Research Conference (ESSDERC). Piscataway, NJ:IEEE, 2018:142-145.
[68] Yu S, Hur J, Luo Y C, et al. Ferroelectric HfO2-based synaptic devices:Recent trends and prospects[J]. Semiconductor Science and Technology, 2021, 36(10):104001.
[69] Chang M F, Shen S J, Liu C C, et al. An offset-tolerant fast-random-read current-sampling-based sense amplifier for small-cell-current nonvolatile memory[J]. IEEE Journal of Solid-State Circuits, 2013, 48(3):864-877.
[70] Luo Y C, Hur J, Yu S M. Ferroelectric tunnel junction based crossbar array design for neuro-inspired computing[J]. IEEE Transactions on Nanotechnology, 2021, 20:243-247.
[71] IEEE international roadmap for devices and systems[EB/OL].[2022-10-13]. https://irds.ieee.org/.
[72] Liu Q, Gao B, Yao P, et al. A fully integrated analog ReRAM based 78.4TOPS/W compute-in-memory chip with fully parallel MAC computing[C]//2020 IEEE International Solid-State Circuits Conference. Piscataway, NJ:IEEE, 2020:500-502.
[73] Wang L F, Ye W, Lai J R, et al. A 14 nm 100 Kb 2T1R transpose RRAM with >150X resistance ratio enhancement and 27.95% reduction on energy-latency product using low-power near threshold read operation and fast data-line current stabling scheme[C]//2021 Symposium on VLSI Technology. Piscataway, NJ:IEEE, 2021:1-2.
[74] Wu T F, Le B Q, Radway R, et al. A 43pJ/cycle nonvolatile microcontroller with 4.7μs shutdown/wake-up integrating 2.3-bit/cell resistive RAM and resilience techniques[C]//2019 IEEE International Solid-State Circuits Conference. Piscataway, NJ:IEEE, 2019:226-228.
[75] Jiang H, Han L L, Lin P, et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor[J]. Scientific Reports, 2016, 6(1):28525.
[76] Golonzka O, Arslan U, Bai P, et al. Non-Volatile RRAM embedded into 22FFL FinFET technology[C]//2019 Symposium on VLSI Technology. Piscataway, NJ:IEEE, 2019:T230-T231.
[77] Ho C, Chang S-C, Huang C-Y, et al. Integrated HfO2-RRAM to achieve highly reliable, greener, faster, costeffective, and scaled devices[C]//2017 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2017:2.6.1-2.6.4.
[78] Yan X B, Qin C Y, Lu C, et al. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing[J]. ACS Applied Materials & Interfaces, 2019, 11(51):48029-48038.
[79] Sun Y, Xu H, Liu S, et al. Short-Term and long-term plasticity mimicked in low-voltage Ag/GeSe/TiN electronic synapse[J]. IEEE Electron Device Letters, 2018, 39(4):492-495.
[80] Li J, Xu H, Sun S Y, et al. In situ learning in hardware compatible multilayer memristive spiking neural network[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(2):448-461.
[81] Yu J, Xu X X, Gong T C, et al. Suppression of filament overgrowth in conductive bridge random access memory by Ta2O5/TaOx bi-layer structure[J]. Nanoscale Research Letters, 2019, 14(1):111.
[82] Xu R, Jang H, Lee M-H, et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV[J]. Nano Letters, 2019, 19(4):2411-2417.
[83] Jang H, Liu C, Hinton H, et al. An atomically thin optoelectronic machine vision processor[J]. Advanced Materials, 2020, 32(36):2002431.
[84] Lim S, Sung C, Kim H, et al. Improved synapse device with MLC and conductance linearity using quantized conduction for neuromorphic systems[J]. IEEE Electron Device Letters, 2018, 39(2):312-315.
[85] He M Z, He D, Qian H, et al. Ultra-Low program current and multilevel phase change memory for high-density storage achieved by a low-current SET pre-operation[J]. IEEE Electron Device Letters, 2019, 40(10):1595-1598.
[86] Jia S, Li H, Gotoh T, et al. Ultrahigh drive current and large selectivity in GeS selector[J]. Nature Communications, 2020, 11(1):4636.
[87] Navarro G, Sabbione C, Bernard M, et al. Highly Sbrich Ge-Sb-Te engineering in 4 Kb phase-change memory for high speed and high material stability under cycling[C]//2019 IEEE 11th International Memory Workshop (IMW). Piscataway, NJ:IEEE, 2019:1-4.
[88] Jiang Y H, Zhou H Y, Zhu D Q, et al. Computational study for spin-orbit torque magnetic random access memory[C]//2021 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2021:8.2.1-8.2.4.
[89] Yang M Y, Deng Y C, Wu Z H, et al. Spin logic devices via electric field controlled magnetization reversal by spin-orbit torque[J]. IEEE Electron Device Letters, 2019, 40(9):1554-1557.
[90] Song Y J, Lee J H, Han S H, et al. Demonstration of highly manufacturable STT-MRAM embedded in 28 nm logic[C]//2018 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2018:18.2.1-18.2.4.
[91] Jung S, Lee H, Myung S, et al. A crossbar array of magnetoresistive memory devices for in-memory computing[J]. Nature, 2022, 601(7892):211-216.
[92] Chang T-C, Chiu Y-C, Lee C-Y, et al. A 22 nm 1 Mb 1024 b-read and near-memory-computing dual-mode STT-MRAM macro with 42.6 GB/s read bandwidth for security-aware mobile devices[C]//2020 IEEE International Solid-State Circuits Conference. Piscataway, NJ:IEEE, 2020:224-226.
[93] Xi Z N, Ruan J J, Li C, et al. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier[J]. Nature Communications, 2017, 8(1):15217.
[94] Yu J, Li Y, Sun W X, et al. Energy efficient and robust reservoir computing system using ultrathin (3.5 nm) ferroelectric tunneling junctions for temporal data learning[C]//2021 Symposium on VLSI Technology. Piscataway, NJ:IEEE, 2021:1-2.
[95] Seo M, Kang M-H, Jeon S-B, et al. First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications[J]. IEEE Electron Device Letters, 2018, 39(9):1445-1448.
[96] Chung W, Si M, Ye P D. First demonstration of Ge ferroelectric nanowire FET as synaptic device for online learning in neural network with high number of conductance state and Gmax/Gmin[C]//2018 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2018:15.2.1-15.2.4.
[97] Boyn S, Girod S, Garcia V, et al. High-performance ferroelectric memory based on fully patterned tunnel junctions[J]. Applied Physics Letters, 2014, 104(5):052909.
[98] Ojha V K, Abraham A, Snášel V. Metaheuristic design of feedforward neural networks:A review of two decades of research[J]. Engineering Applications of Artificial Intelligence, 2017, 60:97-116.
[99] Burr G W, Shelby R M, Sidler S, et al. Experimental demonstration and tolerancing of a large-scale neural network (165000 synapses) using phase-change memory as the synaptic weight element[J]. IEEE Transactions on Electron Devices, 2015, 62(11):3498-3507.
[100] Li C, Wang Z, Rao M, et al. Long short-term memory networks in memristor crossbar arrays[J]. Nature Machine Intelligence, 2019, 1(1):49-57.
[101] Tanaka G, Yamane T, Héroux J B, et al. Recent advances in physical reservoir computing:A review[J]. Neural Networks, 2019, 115:100-123.
[102] Moon J, Ma W, Shin J H, et al. Temporal data classification and forecasting using a memristor-based reservoir computing system[J]. Nature Electronics, 2019, 2(10):480-487.
[103] Gui J, Sun Z N, Wen Y G, et al. A review on generative adversarial networks:Algorithms, theory, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, DOI:10.1109/TKDE.2021.3130191)
[104] Lin Y D, Wu H Q, Gao B, et al. Demonstration of generative adversarial network by intrinsic random noises of analog RRAM devices[C]//2018 IEEE International Electron Devices Meeting (IED M). Piscataway, NJ:IEEE, 2018:3.4.1-3.4.4.
[105] Yao P, Wu H Q, Gao B, et al. Face classification using electronic synapses[J]. Nature Communications, 2017, 8(1):1-8.
[106] Mochida R, Kouno K, Hayata Y, et al. A 4M synapses integrated analog ReRAM based 66.5 TOPS/W neuralnetwork processor with cell current controlled writing and flexible network architecture[C]//2018 IEEE Symposium on VLSI Technology. Piscataway, NJ:IEEE, 2018:175-176.
[107] Ishii M, Kim S, Lewis S, et al. On-chip trainable 1.4M 6T2R PCM synaptic array with 1.6K stochastic LIF neurons for spiking RBM[C]//2019 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2019:14.2.1-14.2.4.
[108] Singh S, Sarma A, Jao N, et al. NEBULA:A neuromorphic spin-based ultra-low power architecture for SNNs and ANNs[C]//2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). Piscataway, NJ:IEEE, 2020:363-376.
[109] Laguna A F, Yin X, Reis D, et al. Ferroelectric FET based in-memory computing for few-shot learning[C]//Proceedings of the 2019 on Great Lakes Symposium on VLSI. New York:Association for Computing Machinery, 2019:373-378.
[110] Li C, Hu M, Li Y N, et al. Analogue signal and image processing with large memristor crossbars[J]. Nature Electronics, 2018, 1(1):52-59.
[111] Zhao H, Liu W Z, Tang J S, et al. Memristor-based signal processing for edge computing[J]. Tsinghua Science and Technology, 2022, 27(3):455-471.
[112] Zhao H, Liu Z W, Tang J S, et al. Implementation of discrete Fourier transform using RRAM arrays with quasi-analog mapping for high-fidelity medical image reconstruction[C]//2021 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2021:12.4.1-12.4.4.
[113] Zhang B, Uysal N, Ewetz R. Computational restructuring:Rethinking image processing using memristor crossbar arrays[C]//2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). Piscataway, NJ:IEEE, 2020:1594-1597.
[114] Le Gallo M, Sebastian A, Cherubini G, et al. Compressed sensing with approximate message passing using in-memory computing[J]. IEEE Transactions on Electron Devices, 2018, 65(10):4304-4312.
[115] Choi S, Sheridan P, Lu W D. Data clustering using memristor networks[J]. Scientific Reports, 2015, 5(1):10492.
[116] Choi S, Shin J H, Lee J, et al. Experimental demonstration of feature extraction and dimensionality reduction using memristor networks[J]. Nano Letters, 2017, 17(5):3113-3118.
[117] Jiang Y N, Kang J F, Wang X N. RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition[J]. Scientific Reports, 2017, 7(1):45233.
[118] Liu C, Han R Z, Zhang S, et al. A high accuracy and robust machine learning network for pattern recognition based on binary RRAM devices[C]//2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). Piscataway, NJ:IEEE, 2017:1-2.
[119] Liang X P, Zhong Y N, Tang J S, et al. Rotating neurons for all-analog implementation of cyclic reservoir computing[J]. Nature Communications, 2022, 13(1):1549.
[120] Fu Y Y, Zhou Y, Huang X D, et al. Forming-free and annealing-free V/VOx/HfWOx/Pt device exhibiting reconfigurable threshold and resistive switching with high speed (<30 ns) and high endurance (>1012/>1010)[C]//2021 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2021:12.6.1-12.6.4.
[121] Christensen D V, Dittmann R, Linares-Barranco B, et al. 2022 roadmap on neuromorphic computing and engineering[J]. Neuromorphic Computing and Engineering, 2022, 2(2):022501.
文章导航

/