综述

混合动力汽车电池寿命预测及能量控制管理策略

  • 武旭东 ,
  • 王靖岳 ,
  • 薛春伟 ,
  • 郑珺文 ,
  • 雷虎 ,
  • 王军年
展开
  • 1. 沈阳理工大学汽车与交通学院, 沈阳 110159;
    2. 吉林大学汽车仿真与控制国家重点实验室, 长春 130025
武旭东,硕士研究生,研究方向为新能源汽车技术,电子信箱:1294756694@qq.com

收稿日期: 2022-05-18

  修回日期: 2023-07-30

  网络出版日期: 2024-04-15

基金资助

汽车仿真与控制国家重点实验室开放基金项目(20191203);辽宁省自然科学基金项目(2020-MS-216)

Review of battery life prediction and energy control management strategies for hybrid electric vehicles

  • WU Xudong ,
  • WANG Jingyue ,
  • XUE Chunwei ,
  • ZHENG Junwen ,
  • LEI Hu ,
  • WANG Junnian
Expand
  • 1. School of Automobile and Transportation, Shenyang Ligong University, Shenyang 110159, China;
    2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China

Received date: 2022-05-18

  Revised date: 2023-07-30

  Online published: 2024-04-15

摘要

针对混合动力汽车电池寿命预测及能量管理,分析了锂离子电池工作原理及影响寿命的因素,综述了不同锂离子电池剩余寿命预测方法的研究状况,并讨论了各种方法的优缺点;依据混合动力汽车工作模式简要说明能量控制策略工作机理,分别论述了基于规则、基于优化及基于人工智能等能量控制管理策略的发展现状,讨论了考虑电池寿命的控制策略对整车经济性能的影响。分析发现,融合多种方法的电池寿命预测方法更具优越性,且考虑电池寿命的能量控制管理策略对混合动力汽车燃油经济性的提高效果更佳。总结了混合动力汽车电池寿命预测及能量控制管理策略存在的问题并对未来的发展方向进行展望。

本文引用格式

武旭东 , 王靖岳 , 薛春伟 , 郑珺文 , 雷虎 , 王军年 . 混合动力汽车电池寿命预测及能量控制管理策略[J]. 科技导报, 2024 , 42(2) : 79 -89 . DOI: 10.3981/j.issn.1000-7857.2024.02.008

Abstract

At present, environmental pollution and energy shortage are becoming increasingly serious, and the automobile industry is also moving in the direction of energy conservation and environmental protection. In order to promote the research on the power performance and fuel economy of hybrid electric vehicles, this paper briefly analyzes the working principle of the lithium-ion battery and the factors affecting the life of the lithium-ion battery, summarizes the research status of different methods for predicting the remaining life of the lithium-ion battery and analyzes their advantages and disadvantages. According to the working mode of hybrid electric vehicles, the working mechanism of energy control management strategies are briefly explained, and the development status of energy control management strategies based on rules, optimization and artificial intelligence is described respectively. The influence of battery life control management strategy on vehicle economic performance is discussed. According to the relevant literature analysis, it is found that the battery life prediction method combining multiple methods is more superior, and the energy control management strategy considering battery life has a better effect on improving the fuel economy of hybrid electric vehicles. The problems of battery life prediction and energy control management strategies for hybrid electric vehicles are summarized and the future development direction is forecasted.

参考文献

[1] 谭忠富, 王抒祥, 何洋, 等. 电动汽车节能与减排潜力计算模型[J]. 现代电力, 2013, 30(2):78-82.
[2] 伍塞特. 混合动力汽车能量管理系统研究及展望[J]. 节能, 2019, 38(10):45-48.
[3] Sciarretta A, Serrao L, Dewangan P C, et al. A control benchmark on the energy management of a plug-in hybrid electric vehicle[J]. Control Engineering Practice, 2014, 29:287-298.
[4] 余卫平, 李明高. 现代车辆新能源与节能减排技术[M]. 北京:机械工业出版社, 2013.
[5] 殷承良, 张建龙. 新能源汽车整车设计——典型车型与结构[M]. 上海:上海科学技术出版社, 2013.
[6] Mi C, M.Abul M, Gao D W. 混合动力电动汽车原理及应用前景[M]. 北京:机械工业出版社, 2013.
[7] 穆邱倩. 数据驱动的锂离子电池剩余寿命预测方法研究[D]. 西安:长安大学, 2021.
[8] 蔡艳平, 陈万, 苏延召, 等. 锂离子电池剩余寿命预测方法综述[J]. 电源技术, 2021, 45(05):678-682.
[9] 罗承东, 吕桃林, 解晶莹, 等. 电池管理系统算法综述[J]. 电源技术, 2021, 45(10):1371-1375.
[10] Li W, Fan Y, Ringbeck F, et al. Electrochemical modelbased state estimation for lithium-ion batteries with adaptive unscented Kalman filter[J]. Journal of Power Sources, 2020, 476:228534.
[11] 卜少华, 代鹏, 叶华国, 等. 基于Arrhenius方程下EV用磷酸铁锂电池寿命预测[J]. 佳木斯大学学报(自然科学版), 2021, 39(2):98-104.
[12] Tran M K, DaCosta A, Mevawalla A, et al. Comparative study of equivalent circuit models performance in four common lithium-ion batteries:LFP, NMC, LMO, NCA[J]. Batteries, 2021, 7(3):51.
[13] Li Y, Vilathgamuwa M, Farrell T, et al. A physicsbased distributed-parameter equivalent circuit model for lithium-ion batteries[J]. Electrochimica Acta, 2019, 299:451-469.
[14] 王学远, 李日康, 魏学哲, 等. 基于传荷电阻的锂离子电池剩余寿命预测研究[J]. 机械工程学报, 2021, 57(14):105-117.
[15] 陈万, 蔡艳平, 苏延召, 等. 基于改进粒子滤波的锂离子电池剩余寿命预测[J]. 中国测试, 2021, 47(7):148-153.
[16] 张之琦, 郁亚娟, 李茜, 等. 相关向量机预测电池健康状态和剩余有效寿命[J]. 电源技术, 2021, 45(3):419-423.
[17] Chen Z, Shi N, Ji Y, et al. Lithium-ion batteries remaining useful life prediction based on BLS-RVM[J]. Energy, 2021, 234:121269.
[18] 王义, 刘欣, 高德欣. 基于BiLSTM神经网络的锂电池SOH估计与RUL预测[J]. 电子测量技术, 2021, 44(20):1-5.
[19] Richardson R R, Osborne M A, Howey D A. Battery health prediction under generalized conditions using a Gaussian process transition model[J]. Journal of Energy Storage, 2019, 23:320-328.
[20] 何星, 丁有军, 宋丽君, 等. 基于加速鱼群算法的锂离子电池剩余寿命预测[J]. 兵器装备工程学报, 2022, 43(02):163-169.
[21] 刘健. 基于高斯过程回归的锂离子电池剩余寿命预测研究[D]. 上海:上海交通大学, 2019.
[22] Li L L, Liu Z F, Tseng M L, et al. Enhancing the Lithium-ion battery life predictability using a hybrid method[J]. Applied Soft Computing, 2019, 74:110-121.
[23] Feng F, Teng S, Liu K, et al. Co-estimation of lithiumion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model[J]. Journal of Power Sources, 2020, 455:227935.
[24] 肖迁, 穆云飞, 焦志鹏, 等. 基于改进LightGBM的电动汽车电池剩余使用寿命在线预测研究[J/OL]. 电工技术学报,(2022-01-04)[2022-08-27]. https://kns.cnki.net/kcms/detail/11.2188.TM.20220104.1226.004.html.
[25] Li J, Li X, He D. A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction[J]. IEEE Access, 2019, 7:75464-75475.
[26] 姚远, 陈志聪, 吴丽君, 等. 采用GRU-MC混合算法的锂离子电池RUL预测[J]. 福州大学学报(自然科学版), 2022, 50(2):169-174.
[27] Xue Z, Zhang Y, Cheng C, et al. Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression[J]. Neurocomputing, 2020, 376:95-102.
[28] 郑伟彦, 吴靖, 许杰, 等. 基于RVM-PF融合算法的锂离子电池剩余使用寿命预测[J]. 浙江电力, 2021, 40(4):54-64.
[29] Sabri M F M, Danapalasingam K A, Rahmat M F. A review on hybrid electric vehicles architecture and energy management strategies[J]. Renewable and Sustainable Energy Reviews, 2016, 53:1433-1442.
[30] M. Ali A, Söffker D, Realtime application of progressive optimal search and adaptive dynamic programming in multi-source HEVs[C]//Proceedings of the ASME 2017 Dynamic Systems and Control Conference. Tysons, Virginia, USA:American Society of Mechain Engineers, 2017, 58288:V002T17A003.
[31] Du G, Zou Y, Zhang X,et al. Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning[J]. Applied Energy, 2019, 251:113388.
[32] Xiong R, Chen H, Wang C, et al. Towards a smarter hybrid energy storage system based on battery and ultracapacitor-a critical review on topology and energy management[J]. Journal of Cleaner Production, 2018, 202:1228-1240.
[33] 金传琦. 新能源混合动力汽车能量管理策略研究[J]. 交通节能与环保, 2022, 18(2):27-30.
[34] Singh K V, Bansal H O, Singh D. Feed-forward modeling and real-time implementation of an intelligent fuzzy logic-based energy management strategy in a series-parallel hybrid electric vehicle to improve fuel economy[J]. Electrical Engineering, 2020, 102(2):967-987.
[35] 万鹤高. 并联混合动力系统能量管理策略研究[D]. 邯郸:河北工程大学, 2021.
[36] 张金柱, 韩玉敏, 孙远涛, 等. 基于模糊控制的混联式混合动力汽车能量管理策略[J]. 交通科技与经济, 2019, 21(5):53-59.
[37] Zheng Y, He F, Shen X, et al. Energy control strategy of fuel cell hybrid electric vehicle based on working conditions identification by least square support vector machine[J]. Energies, 2020, 13(2):426.
[38] 马琨其. 基于粒子群-模糊控制的并联式混合动力汽车能量管理策略仿真研究[D]. 天津:河北工业大学, 2020.
[39] 杨天. 基于新型动力系统的混合动力能量控制策略仿真研究[D]. 长春:吉林大学, 2017.
[40] 刘云. 并联混合动力汽车参数匹配与优化方法研究[D]. 武汉:武汉理工大学, 2017.
[41] 赵航, 史广奎. 混合动力电动汽车技术[M]. 北京:机械工业出版社, 2017.
[42] Li T, Rizzoni G, Onori S. Optimal energy management of HEVs with consideration of battery aging[C]//Proceedings of 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific. Beijing:IEEE, 2014:1-6.
[43] 孔泽慧, 熊继芬. 基于动态规划的混合动力汽车能量管理策略研究[J]. 时代汽车, 2021, 18(17):14-15.
[44] Liu C, Wang Y, Wang L, et al. Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid energy storage system using dynamic programming optimization[J]. Journal of Power Sources, 2019, 438:227024.
[45] 庞涵泽, 王立, 袁一卿. 基于DP算法的新双模PHEV系统能量管理策略[J]. 汽车安全与节能学报, 2020, 11(2):227-235.
[46] 曾小华, 王星琦, 宋大凤, 等. 考虑电池寿命的插电式混合动力汽车能量管理优化[J]. 浙江大学学报:工学版, 2019, 53(11):2206-2214.
[47] 陈渠, 殷承良, 张建龙, 等. 基于动态规划与机器学习的插电式混合动力汽车能量管理算法研究[J]. 汽车技术, 2020, 51(10):51-57.
[48] Li X, Wang Y, Yang D, et al. Adaptive energy management strategy for fuel cell/battery hybrid vehicles using Pontryagin's Minimal Principle[J]. Journal of Power Sources, 2019, 440:227105.
[49] 鲍宸浩. 基于电池寿命的混合动力汽车能量管理策略研究[D]. 西安:长安大学, 2020.
[50] Serrao L, Onori S, Rizzoni G. ECMS as a realization of Pontryagin's minimum principle for HEV control[C]//Proceedings of the American Control Conference. St. Louis, MO, USA:IEEE, 2009:3964-3969.
[51] Ebbesen S, Elbert P, Guzzella L. Battery state-of-health perceptive energy management for hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2012, 61(7):2893-2900.
[52] Sezer V, Gokasan M, Bogosyan S. A novel ECMS and combined cost map approach for high-efficiency series hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2011, 60(8):3557-3570.
[53] 李淼林. 新能源汽车技术[M]. 北京:北京大学出版社, 2020.
[54] Borhan H, Vahidi A, Phillips A M, et al. MPC-based energy management of a power-split hybrid electric vehicle[J]. IEEE Transactions on Control Systems Technology, 2012, 20(3):593-603.
[55] Borhan H, Vahidi A, Phillips A M, et al. Predictive energy management of a power-split hybrid electric vehicle[C]//Proceedings of the American Control Conference. St. Louis, MO, USA:IEEE, 2009:3970-3976.
[56] Bonab S A, Emadi A. MPC-based energy management strategy for an autonomous hybrid electric vehicle[J]. IEEE Open Journal of Industry Applications, 2020, 1:171-180.
[57] Liu X, Qin D, Wang S. Minimum energy management strategy of equivalent fuel consumption of hybrid electric vehicle based on improved global optimization equivalent factor[J]. Energies, 2019, 12(11):2076.
[58] Zhang F, Xi J, Langari R. An adaptive equivalent consumption minimization strategy for parallel hybrid electric vehicle based on fuzzy PI[C]//Proceedings of 2016 IEEE Intelligent Vehicles Symposium. Gothenburg, Sweden:IEEE, 2016:460-465.
[59] 孙芳科. 混合动力汽车瞬时最优控制策略的研究[D]. 济南:山东大学, 2018.
[60] 郭俊利. 基于工况识别的混合动力汽车能量管理策略研究[J]. 粘接, 2020, 41(1):185-188.
[61] Wu Y, Zhang Y, Li G, et al. A predictive energy management strategy for multi-mode plug-in hybrid electric vehicles based on multi neural networks[J]. Energy, 2020, 208:118366.
[62] Sun Z, Wang Y, Chen Z, et al. Min-max game based energy management strategy for fuel cell/supercapacitor hybrid electric vehicles[J]. Applied Energy, 2020, 267:115086.
[63] 耿文冉, 楼狄明, 张彤. 基于粒子群优化的混合动力汽车多目标能量管理策略[J]. 同济大学学报(自然科学版), 2020, 48(7):1030-1039.
[64] 高建树, 尹尔乐, 陈煜, 等. 基于鱼群算法的复合电源模糊能量管理策略[J]. 计算机应用与软件, 2021, 38(11):86-90.
[65] Meng D, Zhang Y, Zhou M, et al. Intelligent fuzzy energy management research for a uniaxial parallel hybrid electric vehicle[J]. Computers & Electrical Engineering, 2016, 58:447-464.
[66] 徐福国. 混合动力汽车计及电池寿命的能量管理优化控制策略研究[D]. 秦皇岛:燕山大学, 2016.
[67] 陈景夫. 面向动力电池衰减的增程式电动客车能量管理策略研究[D]. 哈尔滨:哈尔滨理工大学, 2016.
[68] Akar F, Tavlasoglu Y, Vural B. An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life[J]. IEEE Transactions on Transportation Electrification, 2017, 3(1):191-200.
[69] Fu Z, Zhu L, Tao F, et al. Optimization based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle considering fuel economy and fuel cell lifespan[J]. International Journal of Hydrogen Energy, 2020, 45(15):8875-8886.
[70] 李双双. 考虑动力电池寿命衰退的PHEV能量管理控制策略研究[D]. 重庆:重庆大学, 2018.
[71] Ferahtia S, Djeroui A, Mesbahi T, et al. Optimal adaptive gain LQR-based energy management strategy for battery-supercapacitor hybrid power system[J]. Energies, 2021, 14(6):1660.
[72] 杨轶成, 丁明进, 王响成, 等. 基于超级电容的双向DC-DC变换器控制研究[J]. 电源学报, 2021, 19(4):129-139.
文章导航

/