专稿

河湖水体新污染物赋存特征、去除技术及防控对策

展开
  • 1.    浙江大学化学工程与生物工程学院,杭州 310027

    2.    贵州大学土木工程学院,贵阳 550025

    3.    贵州大学资源与环境工程学院,贵阳 550025

    4.    苏州科技大学环境科学与工程学院,苏州 215009

    5.    中国人民解放军96901部队23分队,北京 100094

王斌,特聘教授,研究方向为水中新污染物治理,电子邮箱:bwang7@gzu.edu.cn

收稿日期: 2024-01-02

  修回日期: 2024-04-29

  网络出版日期: 2024-05-17

基金资助

国家自然科学基金(22306037,52360012);贵州省科技计划项目(QKHZC[2023]YB110,QKHJC-ZK[2022]YB102); 贵州大学自然科学专项(特岗)科研基金项目(X2021003)

Occurrence characteristics, ecological risks and prevention and control measures of new pollutants in river and lake water

Expand
  • 1. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

    2. College of Civil Engineering, Guizhou University, Guiyang 550025, China

    3. College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China

    4. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

    5. Unit 96901 People's Liberation Army of China, Detachment 23, Beijing 100094, China

Received date: 2024-01-02

  Revised date: 2024-04-29

  Online published: 2024-05-17

摘要

近年来,河湖水中新污染物检出频率和类型逐渐增多,包括持久性有机污染物、内分泌干扰物、抗生素、微塑料等新污染物,新污染物治理已成为我国“十四五”生态环境保护的重点工作之一。相较于传统污染物,新污染物由于其隐蔽性、广泛性、环境持久性以及慢性健康效应等,给河湖水生态环境安全和饮水健康构成潜在的风险。我国针对新污染物治理总体上起步相关较晚,面临监测技术手段较少、污染物质底数不清和相关防控法规不完善等难题,因此,开展河湖新污染物治理与生态和健康风险研究,是新污染物治理工作内容中不容忽视的环节。本文通过梳理了新污染物的政策与行动计划发展情况,分析了河湖水中新污染物赋存特征和生态风险,总结了河湖水中新污染物防控技术研究进展,提出了河湖水新污染物防控策略和健康风险效应评价方法,为河湖水中新污染物防控提供技术策略参考。

本文引用格式

王斌, 李文嘉, 王涛, 李江, 许晓毅, 张林, 侯立安 . 河湖水体新污染物赋存特征、去除技术及防控对策[J]. 科技导报, 0 : 1 -12 . DOI: 10.3981/i.issn.1000-7857.2024.01.00019

Abstract

In recent years, the frequency and types of new pollutants detected in rivers and lakes have gradually increased, including persistent organic pollutants, endocrine disruptors, antibiotics, microplastics and other new pollutants. The management of new pollutants has become one of the priorities of ecological environmental protection in China in the “14th Five-Year Plan”. Compared with traditional pollutants, new pollutants pose potential risks to the safety of river and lake ecosystems and the health of drinking water due to their invisibility, extensiveness, environmental persistence and chronic health effects. China's new pollutant management in general started late, facing fewer monitoring technology means, the bottom of the pollutant is not clear and the related prevention and control regulations are not perfect and other problems, therefore, to carry out the new pollutant management in rivers and lakes and the ecological and health risk research is the new pollutant management of the content of the work cannot be ignored. In this paper, the development of policies and action plans for new pollutants is sorted out, the characteristics and ecological risks of new pollutants in rivers and lakes are analyzed, the progress of research on new pollutant prevention and control technologies in rivers and lakes is summarized, and new pollutant prevention and control strategies for rivers and lakes and methods for evaluating the effects of health risks are proposed, so as to provide a reference for the prevention and control strategies of new pollutants in rivers and lakes.

参考文献

[1] Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: A review of the literature[J]. International Journal of Hygiene and Environmental Health, 2011, 214(6): 442-448.

[2] Jarman W M, Ballschmiter K. From coal to DDT: The history of the development of the pesticide DDT from synthetic dyes till Silent Spring[J]. Endeavour, 2012, 36(4): 131-142.

[3] 韦正峥, 向月皎, 郭云, 等. 国内外新污染物环境管理政策分析与建议[J]. 环境科学研究, 2022, 35(2): 443-451.

[4] 李秋爽, 於方, 曹国志, 等. 新污染物治理进展及“十四五”期间和长期治理思路研究[J]. 环境保护, 2021, 49(10): 13-19.

[5] Rathi B S, Kumar P S, Show P L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research[J]. Journal of Hazardous Materials, 2021, 409: 124413.

[6] Hu D F, Zhang Y X, Shen M C. Investigation on microplastic pollution of Dongting Lake and its affiliated rivers[J]. Marine Pollution Bulletin, 2020, 160: 111555.

[7] Chen Y P, Xie H W, Junaid M, et al. Spatiotemporal distribution, source apportionment and risk assessment of typical hormones and phenolic endocrine disrupting chemicals in environmental and biological samples from the mariculture areas in the Pearl River Delta, China[J]. The Science of the Total Environment, 2022, 807(Pt 1): 150752.

[8] 刘宝印, 荀斌, 黄宝荣, 等. 我国水环境中新污染物空间分布特征分析[J]. 环境保护, 2021, 49(10): 25-30.

[9] 秦宇, 李健鹏, 毛鑫, 等. 膜分离技术去除水中新兴污染物的研究进展[J]. 水处理技术, 2023, 49(7): 1-6, 26.

[10] 陈玫宏, 郭敏, 刘丹, 等. 典型内分泌干扰物在太湖及其支流水体和沉积物中的污染特征[J]. 中国环境科学, 2017, 37(11): 4323-4332.

[11] Yan M T, Nie H Y, Xu K H, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River Estuary, China[J]. Chemosphere, 2019, 217: 879-886.

[12] 武倩倩, 吴强, 宋帅, 等. 天津市主要河流和土壤中全氟化合物空间分布、来源及风险评价[J]. 环境科学, 2021, 42(8): 3682-3694.

[13] Gao H, Zhao F Q, Li R J, et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in water of Liaohe River Basin, China[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108297.

[14] 韩迁, 张玉娇, 赖承钺, 等. 成都市典型流域抗生素分布特征及生态风险评价[J].  生态毒理学报, 2023, 18(2): 395-409.

[15] Sharma S, Basu S M, Shetti N P, et al. Microplastics in the environment: Occurrence, perils, and eradication[J]. Chemical Engineering Journal, 2021, 408: 127317.

[16] Peng G Y, Xu P, Zhu B S, et al. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities[J]. Environmental Pollution, 2018, 234: 448-456.

[17] Xu P, Peng G Y, Su L, et al. Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China[J]. Marine Pollution Bulletin, 2018, 133: 647-654.

[18] Ye Y H, Zhang A G, Teng J, et al. Pollution characteristics and ecological risk of microplastic in sediments of Liaodong Bay from the northern Bohai Sea in China[J]. Marine Pollution Bulletin, 2023, 187: 114505.

[19] Grobin A, Roškar R, Trontelj J. Multi-parameter risk assessment of forty-one selected substances with endocrine disruptive properties in surface waters worldwide[J]. Chemosphere, 2022, 287(Pt 2): 132195.

[20] Lu S, Lin C Y, Lei K, et al. Endocrine-disrupting chemicals in a typical urbanized bay of Yellow Sea, China: Distribution, risk assessment, and identification of priority pollutants[J]. Environmental Pollution, 2021, 287: 117588.

[21] Bacanlı M, Başaran N. Importance of antibiotic residues in animal food[J]. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2019, 125: 462-466.

[22] Wang T Y, Lu Y L, Chen C L, et al. Perfluorinated compounds in estuarine and coastal areas of North Bohai Sea, China[J]. Marine Pollution Bulletin, 2011, 62(8): 1905-1914.

[23] 赵源, 杨红菊, 温雅君, 肖志勇. 京郊典型河流农用水中全氟化合物赋存特征、源解析及生态风险评估[J]. 农业资源与环境学报, 2024, 41(2): 392-400.

[24] Li L, Liu D, Zhang Q, et al. Occurrence and ecological risk assessment of selected antibiotics in the freshwater lakes along the middle and lower reaches of Yangtze River Basin[J]. Journal of Environmental Management, 2019, 249: 109396.

[25] Al-sareji O J, Meiczinger M, Somogyi V, et al. Removal of emerging pollutants from water using enzyme-immobilized activated carbon from coconut shell[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109803.

[26] Kim Ngan Tran T, Chau Tran A, Thanh Ngan Tran T, et al. Optimization of ciprofloxacin adsorption onto CoFe-MOF aerogel cylinders based on response surface methodology: Adsorption kinetics, isotherm models[J]. Materials Science and Engineering: B, 2023, 297: 116694.

[27] Qiu B B, Shao Q N, Shi J C, et al. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges[J]. Separation and Purification Technology, 2022, 300: 121925.

[28] Wang H S, Yang J X, Zhang H, et al. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review[J]. Science of the Total Environment, 2024, 908: 168277.

[29] Zhou M Z, Chen J J, Yu S N, et al. The coupling of persulfate activation and membrane separation for the effective pollutant degradation and membrane fouling alleviation[J]. Chemical Engineering Journal, 2023, 451: 139009.

[30] Neves T D F, Camparotto N G, Rodrigues E A, Mastelaro V R, Dantas R F, Prediger P. New graphene oxide-safranin modified@polyacrylonitrile membranes for removal of emerging contaminants: The role of chemical and morphological features[J]. Chemical Engineering Journal, 2022, 446: 137176.

[31] Cui Z W, Wu J F, Wu T T, et al. Novel wood membrane decorated with covalent organic frameworks and palladium nanoparticles for reduction of aromatic organic contaminants[J]. Separation and Purification Technology, 2023, 319: 124112.

[32] Kumar R, Liu C J, Ha G S, et al. A novel membrane-integrated sustainable technology for downstream recovery of molybdenum from industrial wastewater[J]. Resources, Conservation and Recycling, 2023, 196: 107035.

[33] Bilińska L, Gmurek M, Ledakowicz S. Comparison between industrial and simulated textile wastewater treatment by AOPs–Biodegradability, toxicity and cost assessment[J]. Chemical Engineering Journal, 2016, 306: 550-559.

[34] Zhang S, Sun M, Hedtke T, et al. Mechanism of heterogeneous Fenton reaction kinetics enhancement under nanoscale spatial confinement[J]. Environmental Science & Technology, 2020, 54(17): 10868-10875.

[35] Wang L J, Yang T Y, Xu X Y, et al. Acid groups decorated bimetal-organic catalyst for advanced oxidation technology at full pH range[J]. Journal of Alloys and Compounds, 2023, 969: 172370.

[36] Sergienko N, Lumbaque E C, Duinslaeger N, et al. Electrocatalytic removal of persistent organic contaminants at molybdenum doped manganese oxide coated TiO2 nanotube-based anode[J]. Applied Catalysis B: Environmental, 2023, 334: 122831.

[37] Xue Y T, Kamali M, Liyakat A, et al. A walnut shell biochar-nano zero-valent iron composite membrane for the degradation of carbamazepine via persulfate activation[J]. Science of the Total Environment, 2023, 899: 165535.

[38] Bao Y P, Lee W J, Lim T T, et al. Pore-functionalized ceramic membrane with isotropically impregnated cobalt oxide for sulfamethoxazole degradation and membrane fouling elimination: Synergistic effect between catalytic oxidation and membrane separation[J]. Applied Catalysis B: Environmental, 2019, 254: 37-46.

[39] Chen L, Ren X M, Li Y X, et al. High flux Fe/activated carbon membranes for efficient degradation of organic pollutants in water by activating sodium persulfate[J]. Separation and Purification Technology, 2022, 285: 120411.

[40] Wang J Q, Wang W M, Xiong J B, et al. A constructed wetland system with aquatic macrophytes for cleaning contaminated runoff/storm water from urban area in Florida[J]. Journal of Environmental Management, 2021, 280: 111794.

[41] Chen P P, Yu X F, Zhang J Y. Photocatalysis enhanced constructed wetlands effectively remove antibiotic resistance genes from domestic wastewater[J]. Chemosphere, 2023, 325: 138330.

[42] Qin Z R, Zhao Z H, Jiao W T, et al. Phenanthrene removal and response of bacterial community in the combined system of photocatalysis and PAH-degrading microbial consortium in laboratory system[J]. Bioresource Technology, 2020, 301: 122736.

[43] Yu Q, Zhang R, Deng S, Huang J, Yu G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study[J]. Water Research, 2009, 43(4): 1150-1158.

[44] Romero V, Fernandes S P S, Kovář P, et al. Efficient adsorption of endocrine-disrupting pesticides from water with a reusable magnetic covalent organic framework[J]. Microporous and Mesoporous Materials, 2020, 307: 110523.

[45] 陈金垒, 龚佳昕, 陈锦莉, 等. 昆布多糖-聚合氯化铝铁复配去除水中聚乙烯微塑料[J]. 环境化学, 2024, 43(4): 1401.

[46] Huang B-Q, Cui H-G, Feng T-Y, et al. Thin film composite polyamide nanofiltration membranes with interlayer constructed with core-shell structured polystyrene-polyacrylamide nanospheres for antibiotics separation[J]. Journal of Water Process Engineering, 2024, 57: 104550.

[47] Ma J, Wang Y, Xu H, Ding M, Gao L. MXene (Ti3T2CX)-reinforced thin-film polyamide nanofiltration membrane for short-chain perfluorinated compounds removal[J]. Process Safety and Environmental Protection, 2022, 168: 275-284.

[48] Dai R, Han H, Wang T, Li X, Wang Z. Enhanced removal of hydrophobic endocrine disrupting compounds from wastewater by nanofiltration membranes intercalated with hydrophilic MoS2 nanosheets: Role of surface properties and internal nanochannels[J]. Journal of Membrane Science, 2021, 628: 119267.

[49] Kim S, Hyeon Y, Rho H, Park C. Ceramic membranes as a potential high-performance alternative to microplastic filters for household washing machines[J]. Separation and Purification Technology, 2024, 344: 127278.

[50] G B, Banat F, Abu Haija M. Photoelectrochemical advanced oxidation processes for simultaneous removal of antibiotics and heavy metal ions in wastewater using 2D-on-2D WS2@CoFe2O4 heteronanostructures[J]. Environmental Pollution, 2023, 339: 122753.

[51] Li Z, Zhang P, Li J, Shao T, Jin L. Synthesis of In2O3-graphene composites and their photocatalytic performance towards perfluorooctanoic acid decomposition[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 271: 111-116.

[52] Raj R, Tripathi A, Das S, Ghangrekar M M. Waste coconut shell-derived carbon monolith as an efficient binder-free cathode for electrochemical advanced oxidation treatment of endocrine-disrupting compounds[J]. Journal of Environmental Management, 2023, 348: 119328.

[53] Zanaty M, Zaki A H, El-Dek S I, Abdelhamid H N. Zeolitic imidazolate framework@hydrogen titanate nanotubes for efficient adsorption and catalytic oxidation of organic dyes and microplastics[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 112547

[54] Hu J, Tian J, Yang Y, Li S, Lu J. Enhanced antibiotic degradation via photo-assisted peroxymonosulfate over graphitic carbon nitride nanosheets/CuBi2O4: Highly efficiency of oxygen activation and interfacial charge transfer[J]. Journal of Colloid and Interface Science, 2024, 661: 68-82.

[55] Zhang D, Li Y, Chen X, Li C, Dong L, et al. Wide spectra-responsive Polypyrrole-Ag3PO4/BiPO4 co-coupled TiO2 nanotube arrays for intensified photoelectrocatalysis degradation of PFOA[J]. Separation and Purification Technology, 2022, 287: 120521.

[56] Boutamine Z, Hamdaoui O, Merouani S. Sonochemical and photosonochemical degradation of endocrine disruptor 2-phenoxyethanol in aqueous media[J]. Separation and Purification Technology, 2018, 206: 356-364.

[57] 邓义祥, 雷坤, 安立会, 刘瑞志, 王丽平, 张嘉戌. 我国塑料垃圾和微塑料污染源头控制对策[J]. 中国科学院院刊, 2018, 33(10): 1042-1051.

[58] 姜蕾. 水环境中PPCPs类新型污染物监测及控制技术展望——新型污染物监测平台、污染源头识别及末端控制[J]. 净水技术, 2016, 35(6): 1-5.

[59] 王佳钰, 王中钰, 陈景文, 刘文佳, 崔蕴晗, 傅志强, 宋国宝. 环境新污染物治理与化学品环境风险防控的系统工程[J]. 科学通报, 2022, 67(3): 267-77.

[60] Sanchez M, Ramos D R, Fernandez M I, et al. Removal of emerging pollutants by a 3-step system: Hybrid digester, vertical flow constructed wetland and photodegradation post-treatments[J]. Science of The Total Environment, 2022, 842: 156750.

[61] Pereira L C, De Souza A O, Bernardes M F F, et al. A perspective on the potential risks of emerging contaminants to human and environmental health[J]. Environmental Science and Pollution Research, 2015, 22(18): 13800-13823.

[62] Mitra S, Chakraborty A J, Tareq A M, et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity[J]. Journal of King Saud University - Science, 2022, 34(3): 101865.

[63] Zhu Y, Che R, Zong X, et al. A comprehensive review on the source, ingestion route, attachment and toxicity of microplastics/nanoplastics in human systems[J]. Journal of Environmental Management, 2024, 352.: 120039.

[64] Pang L, Li M, Dukureh A, et al. Association between prenatal perfluorinated compounds exposure and risk of pregnancy complications: A meta-analysis[J]. Ecotoxicology and Environmental Safety, 2024, 272: 116017.

[65] Mathur P, Sanyal D, Callahan D L, et al. Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environ- ment and human health[J]. Environmental Pollution, 2021, 291: 118233.

[66] Fan Y, Pan D, Yang M, et al. Radiolabelling and in vivo radionuclide imaging tracking of emerging pollutants in environmental toxicology: A review[J]. Science of The Total Environment, 2023, 866: 161412.

[67] Yamashita R, Nishio M, Do R K G, et al. Convolutional neural networks: An overview and application in radiology[J]. Insights into Imaging, 2018, 9(4): 611-629.

[68] Wang X, Yu D, Ma L, et al. Using big data searching and machine learning to predict human health risk probability from pesticide site soils in China[J]. Journal of Environmental Management, 2022, 320: 115798.

文章导航

/