专题:关键技术与创新驱动

动态红外伪装技术研究进展

  • 徐高平 ,
  • 马治 ,
  • 董士博 ,
  • 王潘宇 ,
  • 陈晓玉 ,
  • 周明星 ,
  • 张雷鹏
展开
  • 1. 湖北航天技术研究院总体设计所, 武汉 430040;
    2. 哈尔滨工业大学复合材料与结构研究所, 哈尔滨 150001
徐高平,工程师,研究方向为多谱段目标特性,电子信箱:xgp326265322@163.com

收稿日期: 2022-12-23

  修回日期: 2023-03-01

  网络出版日期: 2024-05-22

Research status and progress of dynamic infrared camouflage technology

  • XU Gaoping ,
  • MA Zhi ,
  • DONG Shibo ,
  • WANG Panyu ,
  • CHEN Xiaoyu ,
  • ZHOU Mingxing ,
  • ZHANG Leipeng
Expand
  • 1. System Design Institute of Hubei Aerospace Technology Academy, Wuhan 430040, China;
    2. Institute of Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, China

Received date: 2022-12-23

  Revised date: 2023-03-01

  Online published: 2024-05-22

摘要

全方位红外侦察手段的快速发展,提高了各类军事目标的被发现概率,因此亟需实现目标物体的动态红外伪装能力。在阐述动态红外伪装原理的基础上,综述了动态红外伪装技术的主要方式,主要包括温度调控型红外伪装技术与发射率调控型红外伪装技术,分析了动态红外伪装技术的机制及趋势,指出红外探测技术的发展将推动动态红外伪装技术取代传统伪装技术,走向工程应用。

本文引用格式

徐高平 , 马治 , 董士博 , 王潘宇 , 陈晓玉 , 周明星 , 张雷鹏 . 动态红外伪装技术研究进展[J]. 科技导报, 2024 , 42(8) : 39 -47 . DOI: 10.3981/j.issn.1000-7857.2022.12.01984

Abstract

With the rapid development of infrared detecting technology, the detection probability of various military targets has been increased. Therefore, it is urgent to realize the dynamic infrared camouflage capability of target objects. On the basis of explaining the principle of dynamic infrared camouflage, this paper summarizes the main methods of dynamic infrared camouflage technology, including temperature control infrared camouflage technology and emissivity control infrared camouflage technology, and analyzes the research status and progress of dynamic infrared camouflage technology.

参考文献

[1] 饶留源.军事转型中的美军作战实验室研究[D].长沙:国防科学技术大学, 2007.
[2] Mao Z P, Wang W, Liu Y, et al. Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics[J]. Thin Solid Films, 2014, 558:208-214.
[3] Thompson D, Zhu L X, Mittapally R, et al. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit[J]. Nature, 2018, 561(7722):216-221.
[4] Chen S Q, Shi B B, He W D, et al. Quasifractal networks as current collectors for transparent flexible supercapacitors[J]. Advanced Functional Materials, 2019, 29(48):1906618.
[5] Phan L, Kautz R, Leung E M, et al. Dynamic materials inspired by cephalopods[J]. Chemistry of Materials, 2016, 28(19):6804-6816.
[6] 涂亮亮,贾春阳,翁小龙,等.聚苯胺衍生物电致变色薄膜的制备与物性研究[J].化学学报, 2010, 68(24):2590-2594.
[7] 吴平.半导体热电材料的热电性能与制冷应用研究[D].武汉:华中科技大学, 2019.
[8] Liu P, Liu L, Jiang K L, et al. Carbon-nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays[J]. Small, 2011, 7(6):732-736.
[9] Pei Y Z, Wang H, Snyder G J. Band engineering of thermoelectric materials[J]. Advanced Materials, 2012, 24(46):6125-6135.
[10] Liu Q, Tian B, Liang J, et al. Recent advances in printed flexible heaters for portable and wearable thermal management[J]. Materials Horizons, 2021, 8(6):1634-1656.
[11] Yin G, Wang Y, Wang W, et al. A flexible electromagnetic interference shielding fabric prepared by construction of PANI/MXene conductive network via layer-bylayer assembly[J]. Advanced Materials Interfaces, 2021, 8(6):2001893.
[12] Ma Z L, Kang S L, Ma J Z, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding[J]. ACS Nano, 2020, 14(7):8368-8382.
[13] Jia X C, Shen B, Zhang L H, et al. Waterproof MXenedecorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating[J]. Composites Part B:Engineering, 2020, 198:108250.
[14] Zhang X S, Wang X F, Lei Z W, et al. Flexible MXenedecorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances[J]. ACS Applied Materials&Interfaces, 2020, 12(12):14459-14467.
[15] Zhou B, Su M J, Yang D Z, et al. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance[J]. ACS Applied Materials&Interfaces, 2020, 12(36):40859-40869.
[16] Liu Q, Zhang Y, Liu Y B, et al. Ultrathin, biomimetic multifunctional leaf-like silver nanowires/Ti3C2Tx MXene/cellulose nanofibrils nanocomposite film for high-performance electromagnetic interference shielding and thermal management[J]. Journal of Alloys and Compounds, 2021, 860:158151.
[17] Li J, Wang Y, Yue T N, et al. Robust electromagnetic interference shielding, joule heating, thermal conductivity, and anti-dripping performances of polyoxymethylene with uniform distribution and high content of carbonbased nanofillers[J]. Composites Science and Technology, 2021, 206:108681.
[18] 李铭洋.基于可逆银电沉积的变红外发射率器件[D].长沙:国防科技大学, 2020.
[19] 曹海山.热电制冷技术进展与展望[J].制冷学报, 2022, 43(4):26-34.
[20] Liu W D, Yang L, Chen Z G, et al. Promising and ecofriendly Cu2X-based thermoelectric materials:Progress and applications[J]. Advanced Materials, 2020, 32(8):1905703.
[21] 钟琦.新型半导体材料热输运和热电性质的研究[D].烟台:烟台大学, 2021.
[22] Systems B. ADAPTIV:A unique camouflage system[EB/OL].[2022-12-31]. http://www.baesystems.com/en/feature/adativ-cloak-of-invisibility.
[23] Hong S, Shin S, Chen R K. An adaptive and wearable thermal camouflage device[J]. Advanced Functional Materials, 2020, 30(11):1909788.
[24] Morin S A, Shepherd R F, Kwok S W, et al. Camouflage and display for soft machines[J]. Science, 2012, 337(6096):828-832.
[25] Kats M A, Blanchard R, Zhang S, et al. Vanadium dioxide as a natural disordered metamaterial:Perfect thermal emission and large broadband negative differential thermal emittance[J]. Physical Review X, 2013, 3(4):041004.
[26] Li M Y, Liu D Q, Cheng H F, et al. Graphene-based reversible metal electrodeposition for dynamic infrared modulation[J]. Journal of Materials Chemistry C, 2020, 8(25):8538-8545.
[27] Xu C Y, Stiubianu G T, Gorodetsky A A. Adaptive infrared-reflecting systems inspired by cephalopods[J]. Science, 2018, 359(6383):1495-1500.
[28] Jeffrey S. Hale J A W. Prospects for IR emissivity control using electrochromic structures[J]. Thin Solid Films, 1999, 339:174-180.
[29] Zhang X, Tian Y L, Li W J, et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films[J]. Solar Energy Materials and Solar Cells, 2019, 200:109916.
[30] Mandal J, Du S C, Dontigny M, et al. Li4Ti5O12:A visible-to-infrared broadband electrochromic material for optical and thermal management[J]. Advanced Functional Materials, 2018, 28(36):1802180.
[31] Li M, Gould T, Su Z, et al. Electrochromic properties of Li4Ti5O12:From visible to infrared spectrum[J]. Applied Physics Letters, 2019, 115(7):073902.
[32] Yan H, Zhu Z, Zhang D, et al. A new hydrothermal synthesis of spherical Li4Ti5O12 anode material for lithiumion secondary batteries[J]. Journal of Power Sources, 2012, 219:45-51.
[33] Chandrasekhar P, Zay B J, McQueeney T, et al. Conducting Polymer (CP) infrared electrochromics in spacecraft thermal control and military applications[J]. Synthetic Metals, 2003, 135/136:23-24.
[34] Salihoglu O, Uzlu H B, Yakar O, et al. Graphene-based adaptive thermal camouflage[J]. Nano Letters, 2018, 18(7):4541-4548.
文章导航

/