[1] 饶留源.军事转型中的美军作战实验室研究[D].长沙:国防科学技术大学, 2007.
[2] Mao Z P, Wang W, Liu Y, et al. Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics[J]. Thin Solid Films, 2014, 558:208-214.
[3] Thompson D, Zhu L X, Mittapally R, et al. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit[J]. Nature, 2018, 561(7722):216-221.
[4] Chen S Q, Shi B B, He W D, et al. Quasifractal networks as current collectors for transparent flexible supercapacitors[J]. Advanced Functional Materials, 2019, 29(48):1906618.
[5] Phan L, Kautz R, Leung E M, et al. Dynamic materials inspired by cephalopods[J]. Chemistry of Materials, 2016, 28(19):6804-6816.
[6] 涂亮亮,贾春阳,翁小龙,等.聚苯胺衍生物电致变色薄膜的制备与物性研究[J].化学学报, 2010, 68(24):2590-2594.
[7] 吴平.半导体热电材料的热电性能与制冷应用研究[D].武汉:华中科技大学, 2019.
[8] Liu P, Liu L, Jiang K L, et al. Carbon-nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays[J]. Small, 2011, 7(6):732-736.
[9] Pei Y Z, Wang H, Snyder G J. Band engineering of thermoelectric materials[J]. Advanced Materials, 2012, 24(46):6125-6135.
[10] Liu Q, Tian B, Liang J, et al. Recent advances in printed flexible heaters for portable and wearable thermal management[J]. Materials Horizons, 2021, 8(6):1634-1656.
[11] Yin G, Wang Y, Wang W, et al. A flexible electromagnetic interference shielding fabric prepared by construction of PANI/MXene conductive network via layer-bylayer assembly[J]. Advanced Materials Interfaces, 2021, 8(6):2001893.
[12] Ma Z L, Kang S L, Ma J Z, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding[J]. ACS Nano, 2020, 14(7):8368-8382.
[13] Jia X C, Shen B, Zhang L H, et al. Waterproof MXenedecorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating[J]. Composites Part B:Engineering, 2020, 198:108250.
[14] Zhang X S, Wang X F, Lei Z W, et al. Flexible MXenedecorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances[J]. ACS Applied Materials&Interfaces, 2020, 12(12):14459-14467.
[15] Zhou B, Su M J, Yang D Z, et al. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance[J]. ACS Applied Materials&Interfaces, 2020, 12(36):40859-40869.
[16] Liu Q, Zhang Y, Liu Y B, et al. Ultrathin, biomimetic multifunctional leaf-like silver nanowires/Ti3C2Tx MXene/cellulose nanofibrils nanocomposite film for high-performance electromagnetic interference shielding and thermal management[J]. Journal of Alloys and Compounds, 2021, 860:158151.
[17] Li J, Wang Y, Yue T N, et al. Robust electromagnetic interference shielding, joule heating, thermal conductivity, and anti-dripping performances of polyoxymethylene with uniform distribution and high content of carbonbased nanofillers[J]. Composites Science and Technology, 2021, 206:108681.
[18] 李铭洋.基于可逆银电沉积的变红外发射率器件[D].长沙:国防科技大学, 2020.
[19] 曹海山.热电制冷技术进展与展望[J].制冷学报, 2022, 43(4):26-34.
[20] Liu W D, Yang L, Chen Z G, et al. Promising and ecofriendly Cu2X-based thermoelectric materials:Progress and applications[J]. Advanced Materials, 2020, 32(8):1905703.
[21] 钟琦.新型半导体材料热输运和热电性质的研究[D].烟台:烟台大学, 2021.
[22] Systems B. ADAPTIV:A unique camouflage system[EB/OL].[2022-12-31]. http://www.baesystems.com/en/feature/adativ-cloak-of-invisibility.
[23] Hong S, Shin S, Chen R K. An adaptive and wearable thermal camouflage device[J]. Advanced Functional Materials, 2020, 30(11):1909788.
[24] Morin S A, Shepherd R F, Kwok S W, et al. Camouflage and display for soft machines[J]. Science, 2012, 337(6096):828-832.
[25] Kats M A, Blanchard R, Zhang S, et al. Vanadium dioxide as a natural disordered metamaterial:Perfect thermal emission and large broadband negative differential thermal emittance[J]. Physical Review X, 2013, 3(4):041004.
[26] Li M Y, Liu D Q, Cheng H F, et al. Graphene-based reversible metal electrodeposition for dynamic infrared modulation[J]. Journal of Materials Chemistry C, 2020, 8(25):8538-8545.
[27] Xu C Y, Stiubianu G T, Gorodetsky A A. Adaptive infrared-reflecting systems inspired by cephalopods[J]. Science, 2018, 359(6383):1495-1500.
[28] Jeffrey S. Hale J A W. Prospects for IR emissivity control using electrochromic structures[J]. Thin Solid Films, 1999, 339:174-180.
[29] Zhang X, Tian Y L, Li W J, et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films[J]. Solar Energy Materials and Solar Cells, 2019, 200:109916.
[30] Mandal J, Du S C, Dontigny M, et al. Li4Ti5O12:A visible-to-infrared broadband electrochromic material for optical and thermal management[J]. Advanced Functional Materials, 2018, 28(36):1802180.
[31] Li M, Gould T, Su Z, et al. Electrochromic properties of Li4Ti5O12:From visible to infrared spectrum[J]. Applied Physics Letters, 2019, 115(7):073902.
[32] Yan H, Zhu Z, Zhang D, et al. A new hydrothermal synthesis of spherical Li4Ti5O12 anode material for lithiumion secondary batteries[J]. Journal of Power Sources, 2012, 219:45-51.
[33] Chandrasekhar P, Zay B J, McQueeney T, et al. Conducting Polymer (CP) infrared electrochromics in spacecraft thermal control and military applications[J]. Synthetic Metals, 2003, 135/136:23-24.
[34] Salihoglu O, Uzlu H B, Yakar O, et al. Graphene-based adaptive thermal camouflage[J]. Nano Letters, 2018, 18(7):4541-4548.