[1] 侯祥龙,雷建银,李世强,等. 3D打印贝壳仿生复合材料的拉伸力学行为[J].高压物理学报, 2020, 34(1):74-80.
[2] William P J, Kwei L R, Petzold L R, et al. GPU-based simulations of fracture in idealized brick and mortar composites[J]. Journal of the Mechanics and Physics of Solids, 2015, 80:68-85.
[3] Bates S R G, Farrow I R, Trask R S. Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities[J]. Materials&Design, 2019, 162:130-142.
[4] Beller G, Burkhart M, Felsenberg D, et al. Vertebral body data set ESA29-99-L3[EB/OL].[2023-09-20] http://bone3d.zib.de/data/2005/ESA29-99-L3.
[5] Thielen M, Speck T, Seidel R. Viscoelasticity and compaction behaviour of the foam-like pomelo (Citrus maxima) peel[J]. Journal of Materials Science, 2013, 48(9):3469-3478.
[6] 卢子兴,崔少康,杨振宇.珍珠母及其仿生复合材料力学行为的研究进展[J].复合材料学报, 2021, 38(3):641-667.
[7] Yin J, Huang J, Zhang S, et al. Ultrawide low frequency band gap of phononic crystal in nacreous composite material[J]. Physics Letters A, 2014, 378(32):2436-2442.
[8] Clegg W J, Kendall K, Alford N M, et al. A simple way to make tough ceramics[J]. Nature, 1990, 347:455-457.
[9] Launey M E, Munch E, Alsem D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites[J]. Journal of the Royal Society, Interface, 2010, 7(46):741-753.
[10] Li Z, Guo Q, Li Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure[J]. Nano Letters, 2015, 15(12):8077-8083.
[11] Li S K, Mao L B, Gao H L, et al. Bio-inspired clay nanosheets/polymer matrix/mineral nanofibers ternary composite films with optimal balance of strength and toughness[J]. Science China Materials, 2017, 60(10):909-917.
[12] 陈斌.标准化助推3D打印在医疗领域的应用[J].科技导报, 2019, 37(5):31-38.
[13] 王欣宇,韩颖超,戴红莲,等.多孔梯度结构羟基磷灰石仿骨材料的制备和微观形貌观测[J].中国生物医学工程学报, 2003, 22(3):274-278.
[14] Gómez S, Vlad M D, López J, et al. Design and properties of 3D scaffolds for bone tissue engineering[J]. Acta Biomaterialia, 2016, 42:341-350.
[15] Porter M M, Imperio R, Wen M, et al. Bioinspired scaffolds with varying pore architectures and mechanical properties[J]. Advanced Functional Materials, 2014, 24(14):1978-1987.
[16] Fang X M, Wang X H, Zhang H, et al. Electrically conductive honeycomb monolith of nanolaminated Ti3AlC2:Preparation and characterization[J]. Journal of Materials Science&Technology, 2015, 31(1):125-128.
[17] Zhao B, Fan B B, Xu Y W, et al. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features[J]. ACS Applied Materials&Interfaces, 2015, 7(47):26217-26225.
[18] 张金山,乔及森,孔海勇,等.铝圆管蜂窝材料制备及其准静态压缩性能研究[J].机械工程学报, 2020, 56(16):78-83.
[19] Ko K, Jin S, Lee S E, et al. Impact resistance of nacrelike composites diversely patterned by 3D printing[J]. Composite Structures, 2020, 238:111951.
[20] Zhang M, Lin R C, Wang X, et al. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration[J]. Science Advances, 2020, 6(12):eaaz6725.
[21] 李涤尘,贺健康,田小永,等.增材制造:实现宏微结构一体化制造[J].机械工程学报, 2013, 49(6):129-135.
[22] Xing J F, Zheng M L, Duan X M. Two-photon polymerization microfabrication of hydrogels:An advanced 3D printing technology for tissue engineering and drug delivery[J]. Chemical Society Reviews, 2015, 44(15):5031-5039.
[23] 崔可建,朱才镇,轩钦,等. 3D打印用光敏树脂的高性能化及功能化研究进展[J].高分子通报, 2017(12):28-38.
[24] Kafle A, Luis E, Silwal R, et al. 3D/4D printing of polymers:Fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA)[J]. Polymers, 2021, 13(18):3101.
[25] 高士友,黎宇航,周野飞,等.熔融沉积(FDM)3D打印成形件的力学性能实验研究[J].塑性工程学报, 2017, 24(1):200-206.
[26] Christian H P. A study of sprayforming using uniform droplet sprays[D]. Massachusetts:Massachusetts Institute of Technology, 1992.
[27] 钱垒,兰红波,赵佳伟,等.电场驱动喷射沉积3D打印[J].中国科学:技术科学, 2018, 48(7):773-782.
[28] Yoon Y J, Moon S K, Hwang J. 3D printing as an efficient way for comparative study of biomimetic structures-trabecular bone and honeycomb[J]. Journal of Mechanical Science and Technology, 2014, 28(11):4635-4640.
[29] Martin J J, Fiore B E, Erb R M. Designing bioinspired composite reinforcement architectures via 3D magnetic printing[J]. Nature Communications, 2015, 6:8641.
[30] Erb R M, Segmehl J, Charilaou M, et al. Non-linear alignment dynamics in suspensions of platelets under rotating magnetic fields[J]. Soft Matter, 2012, 8(29):7604-7609.
[31] Song L, Dai R X, Li Y J, et al. Polyvinylidene fluoride energy harvester with boosting piezoelectric performance through 3D printed biomimetic bone structures[J]. ACS Sustainable Chemistry&Engineering, 2021, 9(22):7561-7568.
[32] Chen C, Wang X, Wang Y, et al. Additive manufacturing of piezoelectric materials[J]. Advanced Functional Materials, 2020, 30(52):2005141.
[33] Zhou X, Nowicki M, Cui H T, et al. 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells[J]. Carbon, 2017, 116:615-624.
[34] Wei J H, Wang J L, Su S H, et al. 3D printing of an extremely tough hydrogel[J]. RSC Advances, 2015, 5(99):81324-81329.
[35] Kobayashi M, Chang Y S, Oka M. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus[J]. Biomaterials, 2005, 26(16):3243-3248.
[36] Yang Y, Chen Z Y, Song X, et al. Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing[J]. Advanced Materials, 2017, 29(11):1605750.
[37] Yang Y, Chen Z Y, Song X, et al. Three dimensional printing of high dielectric capacitor using projection based stereolithography method[J]. Nano Energy, 2016, 22:414-421.
[38] 赵峰,李涤尘,靳忠民,等. PEEK熔融沉积成形温度对零件拉伸性能的影响[J].电加工与模具, 2015(5):43-47.
[39] Zhang P, Heyne M A, To A C. Biomimetic staggered composites with highly enhanced energy dissipation:Modeling, 3D printing, and testing[J]. Journal of the Mechanics and Physics of Solids, 2015, 83:285-300.
[40] Dimas L S, Bratzel G H, Eylon I, et al. Tough composites inspired by mineralized natural materials:Computation, 3D printing, and testing[J]. Advanced Functional Materials, 2013, 23(36):4629-4638.
[41] 马骁勇,梁海弋,王联凤.三维打印贝壳仿生结构的力学性能[J].科学通报, 2016, 61(7):728-734.
[42] Ingrole A, Aguirre T G, Fuller L, et al. Bioinspired energy absorbing material designs using additive manufacturing[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119:104518.
[43] Bates S R G, Farrow I R, Trask R S. 3D printed polyurethane honeycombs for repeated tailored energy absorption[J]. Materials&Design, 2016, 112:172-183.
[44] Ajdari A, Nayeb-Hashemi H, Vaziri A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures[J]. International Journal of Solids and Structures, 2011, 48(3/4):506-516.
[45] Guell I A, Fabian A R, McKnight G, et al. Optimal design of a cellular material encompassing negative stiffness elements for unique combinations of stiffness and elastic hysteresis[J]. Materials&Design, 2017, 135:37-50.
[46] Wu Y H, Liu Q, Fu J, et al. Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels[J]. Composites Part B:Engineering, 2017, 121:122-133.
[47] Grunenfelder L K, Suksangpanya N, Salinas C, et al. Bio-inspired impact-resistant composites[J]. Acta Biomaterialia, 2014, 10(9):3997-4008.
[48] Caldwell R L, Dingle H. Ecology and evolution of agonistic behavior in stomatopods[J]. Naturwissenschaften, 1975, 62(5):214-222.
[49] Weaver J C, Milliron G W, Miserez A, et al. The stomatopod dactyl club:A formidable damage-tolerant biological hammer[J]. Science, 2012, 336(6086):1275-1280.
[50] Ribbans B, Li Y J, Tan T. A bioinspired study on the interlaminar shear resistance of helicoidal fiber structures[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56:57-67.
[51] Yaraghi N A, Guarín-Zapata N, Grunenfelder L K, et al. A sinusoidally architected helicoidal biocomposite[J]. Advanced Materials, 2016, 28(32):6835-6844.
[52] Ren L Q, Zhou X L, Liu Q P, et al. 3D magnetic printing of bio-inspired composites with tunable mechanical properties[J]. Journal of Materials Science, 2018, 53(20):14274-14286.
[53] Suksangpanya N, Yaraghi N A, Pipes R B, et al. Crack twisting and toughening strategies in Bouligand architectures[J]. International Journal of Solids and Structures, 2018, 150:83-106.
[54] McKittrick J, Chen P Y, Tombolato L, et al. Energy absorbent natural materials and bioinspired design strategies:A review[J]. Materials Science and Engineering:C, 2010, 30(3):331-342.
[55] Huang W, Zaheri A, Jung J Y, et al. Hierarchical structure and compressive deformation mechanisms of Bighorn sheep (Ovis canadensis) horn[J]. Acta Biomaterialia, 2017, 64:1-14.
[56] Huang W. Impact resistant and energy absorbent natural keratin materials:Horns and hooves[D]. San Diego:University of California, 2018.
[57] Rice C, Tan K T. Horse hoof inspired biomimetic structure for improved damage tolerance and crack diversion[J]. Composite Structures, 2019, 220:362-370.
[58] Wang B F, Zhou B Q, Zhang X Y. A high toughness and light weight armor structure bioinspired design based on a bovine hoof wall[J]. Materials Letters, 2020, 264:127296.