专题:关键技术与创新驱动

仿生阻尼材料3D打印研究进展

  • 尹念 ,
  • 王建平 ,
  • 陈耿彪 ,
  • 易继军
展开
  • 1. 长沙理工大学汽车与机械工程学院, 长沙 410114;
    2. 上海工程技术大学高等职业技术学院, 上海 200437
尹念,硕士研究生,研究方向为仿生结构3D打印,电子信箱:yinnianpoe@163.com

收稿日期: 2023-09-16

  修回日期: 2024-03-29

  网络出版日期: 2024-05-22

基金资助

国家自然科学基金项目(52005053);湖南省自然科学基金项目(2022JJ30610);长沙理工大学研究生科研创新项目(CSL?GCX23046)

Research progress of 3D printing of bionic damping materials

  • YIN Nian ,
  • WANG Jianping ,
  • CHEN Gengbiao ,
  • YI Jijun
Expand
  • 1. School of Automobile and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China;
    2. Higher Vocational and Technical College, Shanghai University of Engineering Science, Shanghai 200437, China

Received date: 2023-09-16

  Revised date: 2024-03-29

  Online published: 2024-05-22

摘要

相比于传统的材料制造技术,3D打印技术自下而上的增材制造过程和生物结构的形成过程具有高度的相似性,能够更有效地模仿出生物材料的复杂结构和功能,但目前在技术、材料等方面仍存在一些问题。以应用于制备仿生阻尼材料的不同3D打印技术为切入点,综述了光固化技术、材料挤出技术、材料喷射技术和粉末床熔融技术的工艺特点,总结了打印技术将走向微观尺度的发展趋势,分析了不同打印技术在仿生骨梯度孔隙结构、仿贝壳软硬相堆叠夹层结构、仿蜂窝轻质多孔结构、仿甲壳螺旋夹层结构和仿角蹄空心管层状结构等仿生阻尼材料打印过程中的技术要点与仍需解决的问题,从新材料、新设计、新手段和新途径等方面探讨了仿生阻尼材料3D打印技术的发展趋势。

本文引用格式

尹念 , 王建平 , 陈耿彪 , 易继军 . 仿生阻尼材料3D打印研究进展[J]. 科技导报, 2024 , 42(8) : 63 -75 . DOI: 10.3981/j.issn.1000-7857.2023.09.01412

Abstract

Compared with the traditional material manufacturing technology, the bottom-up additive manufacturing process of 3D printing technology has a high degree of similarity with the formation process of biological structures, which can more effectively mimic the complex structure and functionality of biomaterials. However, there are still some problems in technology and materials. And there is a lack of systematic research review. Based on different 3D printing technologies applied to the preparation of biomimetic damping materials, the technical characteristics of 3D printing technologies such as light curing technology, material extrusion technology, material jetting technology and powder bed fusion technology are reviewed. This paper summarises the development tendency of the 3D printing technology towards the microscopic scale. In this paper, the performance of pore structure, shell-like soft-hard phase stack sandwich structure, honeycomb-like lightweight porous structure, carapace-like spiral sandwich structure, horn-hoof hollow tube layered structure and other biomimetic damping materials are analyzed. The technical points and problems to be solved in the printing process of different printing technologies in the bionic damping materials are analyzed. The development trend of the 3D printing technology of the bionic damping materials is discussed from the aspects of new materials, new design, new means and new ways, so as to provide references for the rapid advancement of the technology.

参考文献

[1] 侯祥龙,雷建银,李世强,等. 3D打印贝壳仿生复合材料的拉伸力学行为[J].高压物理学报, 2020, 34(1):74-80.
[2] William P J, Kwei L R, Petzold L R, et al. GPU-based simulations of fracture in idealized brick and mortar composites[J]. Journal of the Mechanics and Physics of Solids, 2015, 80:68-85.
[3] Bates S R G, Farrow I R, Trask R S. Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities[J]. Materials&Design, 2019, 162:130-142.
[4] Beller G, Burkhart M, Felsenberg D, et al. Vertebral body data set ESA29-99-L3[EB/OL].[2023-09-20] http://bone3d.zib.de/data/2005/ESA29-99-L3.
[5] Thielen M, Speck T, Seidel R. Viscoelasticity and compaction behaviour of the foam-like pomelo (Citrus maxima) peel[J]. Journal of Materials Science, 2013, 48(9):3469-3478.
[6] 卢子兴,崔少康,杨振宇.珍珠母及其仿生复合材料力学行为的研究进展[J].复合材料学报, 2021, 38(3):641-667.
[7] Yin J, Huang J, Zhang S, et al. Ultrawide low frequency band gap of phononic crystal in nacreous composite material[J]. Physics Letters A, 2014, 378(32):2436-2442.
[8] Clegg W J, Kendall K, Alford N M, et al. A simple way to make tough ceramics[J]. Nature, 1990, 347:455-457.
[9] Launey M E, Munch E, Alsem D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites[J]. Journal of the Royal Society, Interface, 2010, 7(46):741-753.
[10] Li Z, Guo Q, Li Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure[J]. Nano Letters, 2015, 15(12):8077-8083.
[11] Li S K, Mao L B, Gao H L, et al. Bio-inspired clay nanosheets/polymer matrix/mineral nanofibers ternary composite films with optimal balance of strength and toughness[J]. Science China Materials, 2017, 60(10):909-917.
[12] 陈斌.标准化助推3D打印在医疗领域的应用[J].科技导报, 2019, 37(5):31-38.
[13] 王欣宇,韩颖超,戴红莲,等.多孔梯度结构羟基磷灰石仿骨材料的制备和微观形貌观测[J].中国生物医学工程学报, 2003, 22(3):274-278.
[14] Gómez S, Vlad M D, López J, et al. Design and properties of 3D scaffolds for bone tissue engineering[J]. Acta Biomaterialia, 2016, 42:341-350.
[15] Porter M M, Imperio R, Wen M, et al. Bioinspired scaffolds with varying pore architectures and mechanical properties[J]. Advanced Functional Materials, 2014, 24(14):1978-1987.
[16] Fang X M, Wang X H, Zhang H, et al. Electrically conductive honeycomb monolith of nanolaminated Ti3AlC2:Preparation and characterization[J]. Journal of Materials Science&Technology, 2015, 31(1):125-128.
[17] Zhao B, Fan B B, Xu Y W, et al. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features[J]. ACS Applied Materials&Interfaces, 2015, 7(47):26217-26225.
[18] 张金山,乔及森,孔海勇,等.铝圆管蜂窝材料制备及其准静态压缩性能研究[J].机械工程学报, 2020, 56(16):78-83.
[19] Ko K, Jin S, Lee S E, et al. Impact resistance of nacrelike composites diversely patterned by 3D printing[J]. Composite Structures, 2020, 238:111951.
[20] Zhang M, Lin R C, Wang X, et al. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration[J]. Science Advances, 2020, 6(12):eaaz6725.
[21] 李涤尘,贺健康,田小永,等.增材制造:实现宏微结构一体化制造[J].机械工程学报, 2013, 49(6):129-135.
[22] Xing J F, Zheng M L, Duan X M. Two-photon polymerization microfabrication of hydrogels:An advanced 3D printing technology for tissue engineering and drug delivery[J]. Chemical Society Reviews, 2015, 44(15):5031-5039.
[23] 崔可建,朱才镇,轩钦,等. 3D打印用光敏树脂的高性能化及功能化研究进展[J].高分子通报, 2017(12):28-38.
[24] Kafle A, Luis E, Silwal R, et al. 3D/4D printing of polymers:Fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA)[J]. Polymers, 2021, 13(18):3101.
[25] 高士友,黎宇航,周野飞,等.熔融沉积(FDM)3D打印成形件的力学性能实验研究[J].塑性工程学报, 2017, 24(1):200-206.
[26] Christian H P. A study of sprayforming using uniform droplet sprays[D]. Massachusetts:Massachusetts Institute of Technology, 1992.
[27] 钱垒,兰红波,赵佳伟,等.电场驱动喷射沉积3D打印[J].中国科学:技术科学, 2018, 48(7):773-782.
[28] Yoon Y J, Moon S K, Hwang J. 3D printing as an efficient way for comparative study of biomimetic structures-trabecular bone and honeycomb[J]. Journal of Mechanical Science and Technology, 2014, 28(11):4635-4640.
[29] Martin J J, Fiore B E, Erb R M. Designing bioinspired composite reinforcement architectures via 3D magnetic printing[J]. Nature Communications, 2015, 6:8641.
[30] Erb R M, Segmehl J, Charilaou M, et al. Non-linear alignment dynamics in suspensions of platelets under rotating magnetic fields[J]. Soft Matter, 2012, 8(29):7604-7609.
[31] Song L, Dai R X, Li Y J, et al. Polyvinylidene fluoride energy harvester with boosting piezoelectric performance through 3D printed biomimetic bone structures[J]. ACS Sustainable Chemistry&Engineering, 2021, 9(22):7561-7568.
[32] Chen C, Wang X, Wang Y, et al. Additive manufacturing of piezoelectric materials[J]. Advanced Functional Materials, 2020, 30(52):2005141.
[33] Zhou X, Nowicki M, Cui H T, et al. 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells[J]. Carbon, 2017, 116:615-624.
[34] Wei J H, Wang J L, Su S H, et al. 3D printing of an extremely tough hydrogel[J]. RSC Advances, 2015, 5(99):81324-81329.
[35] Kobayashi M, Chang Y S, Oka M. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus[J]. Biomaterials, 2005, 26(16):3243-3248.
[36] Yang Y, Chen Z Y, Song X, et al. Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing[J]. Advanced Materials, 2017, 29(11):1605750.
[37] Yang Y, Chen Z Y, Song X, et al. Three dimensional printing of high dielectric capacitor using projection based stereolithography method[J]. Nano Energy, 2016, 22:414-421.
[38] 赵峰,李涤尘,靳忠民,等. PEEK熔融沉积成形温度对零件拉伸性能的影响[J].电加工与模具, 2015(5):43-47.
[39] Zhang P, Heyne M A, To A C. Biomimetic staggered composites with highly enhanced energy dissipation:Modeling, 3D printing, and testing[J]. Journal of the Mechanics and Physics of Solids, 2015, 83:285-300.
[40] Dimas L S, Bratzel G H, Eylon I, et al. Tough composites inspired by mineralized natural materials:Computation, 3D printing, and testing[J]. Advanced Functional Materials, 2013, 23(36):4629-4638.
[41] 马骁勇,梁海弋,王联凤.三维打印贝壳仿生结构的力学性能[J].科学通报, 2016, 61(7):728-734.
[42] Ingrole A, Aguirre T G, Fuller L, et al. Bioinspired energy absorbing material designs using additive manufacturing[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119:104518.
[43] Bates S R G, Farrow I R, Trask R S. 3D printed polyurethane honeycombs for repeated tailored energy absorption[J]. Materials&Design, 2016, 112:172-183.
[44] Ajdari A, Nayeb-Hashemi H, Vaziri A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures[J]. International Journal of Solids and Structures, 2011, 48(3/4):506-516.
[45] Guell I A, Fabian A R, McKnight G, et al. Optimal design of a cellular material encompassing negative stiffness elements for unique combinations of stiffness and elastic hysteresis[J]. Materials&Design, 2017, 135:37-50.
[46] Wu Y H, Liu Q, Fu J, et al. Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels[J]. Composites Part B:Engineering, 2017, 121:122-133.
[47] Grunenfelder L K, Suksangpanya N, Salinas C, et al. Bio-inspired impact-resistant composites[J]. Acta Biomaterialia, 2014, 10(9):3997-4008.
[48] Caldwell R L, Dingle H. Ecology and evolution of agonistic behavior in stomatopods[J]. Naturwissenschaften, 1975, 62(5):214-222.
[49] Weaver J C, Milliron G W, Miserez A, et al. The stomatopod dactyl club:A formidable damage-tolerant biological hammer[J]. Science, 2012, 336(6086):1275-1280.
[50] Ribbans B, Li Y J, Tan T. A bioinspired study on the interlaminar shear resistance of helicoidal fiber structures[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56:57-67.
[51] Yaraghi N A, Guarín-Zapata N, Grunenfelder L K, et al. A sinusoidally architected helicoidal biocomposite[J]. Advanced Materials, 2016, 28(32):6835-6844.
[52] Ren L Q, Zhou X L, Liu Q P, et al. 3D magnetic printing of bio-inspired composites with tunable mechanical properties[J]. Journal of Materials Science, 2018, 53(20):14274-14286.
[53] Suksangpanya N, Yaraghi N A, Pipes R B, et al. Crack twisting and toughening strategies in Bouligand architectures[J]. International Journal of Solids and Structures, 2018, 150:83-106.
[54] McKittrick J, Chen P Y, Tombolato L, et al. Energy absorbent natural materials and bioinspired design strategies:A review[J]. Materials Science and Engineering:C, 2010, 30(3):331-342.
[55] Huang W, Zaheri A, Jung J Y, et al. Hierarchical structure and compressive deformation mechanisms of Bighorn sheep (Ovis canadensis) horn[J]. Acta Biomaterialia, 2017, 64:1-14.
[56] Huang W. Impact resistant and energy absorbent natural keratin materials:Horns and hooves[D]. San Diego:University of California, 2018.
[57] Rice C, Tan K T. Horse hoof inspired biomimetic structure for improved damage tolerance and crack diversion[J]. Composite Structures, 2019, 220:362-370.
[58] Wang B F, Zhou B Q, Zhang X Y. A high toughness and light weight armor structure bioinspired design based on a bovine hoof wall[J]. Materials Letters, 2020, 264:127296.
文章导航

/