论文

3,5-二氟-2,4,6-三硝基苯甲醚在熔铸炸药中的应用

  • 吴凯 ,
  • 荆苏明 ,
  • 胡菲
展开
  • 1. 山西警察学院爆炸物品公共安全研究中心, 太原 030021;
    2. 中北大学环境与安全工程学院, 太原 030051
吴凯,副教授,研究方向为含能材料爆轰与安全性能测试分析,电子信箱:76831750@qq.com

收稿日期: 2022-06-08

  修回日期: 2023-03-12

  网络出版日期: 2024-06-12

基金资助

国家自然科学基金项目(21975066)

Application of 3,5-difluoro-2,4,6-trinitroanisole in melt-cast carrier explosive

  • WU Kai ,
  • JING Suming ,
  • HU Fei
Expand
  • 1. Centre for Public Safety on Explosive Substances, Shanxi Police College, Taiyuan 030021, China;
    2. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

Received date: 2022-06-08

  Revised date: 2023-03-12

  Online published: 2024-06-12

摘要

3,5-二氟-2,4,6-三硝基苯甲醚(DFTNAN)是一种有望替代三硝基甲苯(TNT)的新型液相载体炸药。为了解 DFTNAN 与其负载材料的相容性,采用差示扫描量热法(DSC 法)和真空安定性试验方法(VST法),对DFTNAN与环三亚甲基三硝胺(RDX)、环四亚甲基四硝胺(HMX)、六硝基六氮杂异戊兹烷(CL-20)、1,1'–二羟基–5,5'–联四唑二羟胺盐(TKX-50)4种高能炸药和Al粉、高氯酸铵(AP)2种功能助剂在质量比为1∶1时的相容性进行了研究,并对 DFTNAN/RDX、DFTNAN/HMX、DFTNAN/CL-20、DFTNAN/Al 和 DFTNAN/AP 混合体系爆轰性能进行了理论计算。相容性研究结果表明:由于DSC法与VST法测试原理的差异,相容性判定结果存在较大差异,通过综合分析确定,除 TKX-50 外,DFTNAN 与 RDX 等均具有良好的相容性。爆轰性能计算结果表明:AP 的加入可有效改善 DFTNAN 炸药的氧平衡;相比于加入RDX、HMX和AP,DFTNAN/CL-20混合体系的爆轰能量最高,爆速达8899 m·s-1、爆压达39.6 GPa、爆热达6442 kJ·kg-1,较纯DFTNAN能量分别提高了4.0 %、32.9%和0.6%。

本文引用格式

吴凯 , 荆苏明 , 胡菲 . 3,5-二氟-2,4,6-三硝基苯甲醚在熔铸炸药中的应用[J]. 科技导报, 2024 , 42(9) : 102 -108 . DOI: 10.3981/j.issn.1000-7857.2022.06.00814

Abstract

3,5-difluoro-2,4,6-trinitroanisole(DFTNAN)is a promising melt-cast carrier explosive that is expected to replace TNT. The compatibility of 3, 5-difluoro-2, 4, 6-trinitroanisole as a new melt-cast explosive carrier with a number of high explosives (RDX, HMX, CL-20 and TKX-50) and functional additives(powdered aluminum and ammonium perchlorate)was studied at the mass ratio of 1:1 by using DSC and VST methods. The detonation properties of DFTNAN/ RDX, DFTNAN/HMX, DFTNAN/CL-20, DFTNAN/Al and DFTNAN/AP mixtures were calculated. Experimental results of compatibility indicated that there were differences in the results of compatibility determination due to the differences in the test principles between DSC method and VST method. Through comprehensive analysis, DFTNAN showed good compatibility with RDX, HMX, CL-20, AP and Al except TKX-50. The results of detonation performance calculation exhibited that the addition of AP can effectively improve the oxygen balance of DFTNA. Among RDX, HMX and AP, the detonation energy of DFTNN/CL-20 mixed system was the biggest, with detonation velocity being 8899 m·s-1, detonation pressure 39.6 GPa, and detonation heat 6442 kJ·kg-1, which are 4.0 %, 32.9 % and 0.6 % bigger than those of pure DFTNAN, respectively.

参考文献

[1] Jing S M, Jiang Z M, Jiao Q J, et al. 3, 5-difluoro-2, 4, 6-trinitroanisole: Promising melt-cast insensitive explosives instead of TNT[J]. Journal of Energetic Materials, 2021(33): 1-12.
[2] Mazzeu M A C, da Costa Mattos E, Iha K. Studies on compatibility of energetic materials by thermal methods[J]. Journal of Aerospace Technology and Management, 2010, 2(1): 53-58.
[3] Vogelsanger B. Chemical stability, compatibility and shelf life of explosives[J]. CHIMIA, 2004, 58(6): 401.
[4] de Klerk W, van der Meer N, Eerligh R. Microcalorimetric study applied to the comparison of compatibility tests (VST and IST) of polymers and propellants[J]. Thermochimica Acta, 1995, 269/270: 231-243.
[5] 朱煜, 王建华, 刘玉存, 等. DFTNAN/B 的热分解行为及相容性[J]. 火炸药学报, 2022, 45(1): 85-89.
[6] 王林剑, 胡菲, 荆苏明, 等. DFTNAN、DNAN及其低共熔物的性能对比[J]. 火炸药学报, 2021, 44(5): 658-664.
[7] Hu F, Wang L J, Liu Y C, et al. Molecular dynamics simulation and experimental study of 3, 5-difluoro-2, 4, 6-trinitroanisole/2, 4, 6, 8, 10, 12-hexanitrohexaazaisowurtzitane mixed components[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 1307-1318.
[8] Strunin V A, Nikolaeva L I. Combustion mechanism of RDX and HMX and possibilities of controlling the combustion characteristics of systems based on them[J]. Combustion, Explosion, and Shock Waves, 2013, 49(1): 53-63.
[9] Muravyev N V, Monogarov K A, Asachenko A F, et al. Pursuing reliable thermal analysis techniques for energetic materials: Decomposition kinetics and thermal stability of dihydroxylammonium 5, 5'-bistetrazole-1, 1'-diolate (TKX-50)[J]. Physical Chemistry Chemical Physics, 2017, 19(1): 436-449.
[10] Meyer R, Köhler J, Homburg A. Explosives[M]. 5th ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2002.
[11] 刘子如, 阴翠梅, 孔扬辉, 等. 高氯酸铵的热分解[J]. 含能材料, 2000, 8(2): 75-79.
[12] Kawamoto A M, Pardini L C, Rezende L C. Synthesis of copper chromite catalyst[J]. Aerospace Science and Technology, 2004, 8(7): 591-598.
[13] 胡荣祖, 孙丽霞, 昊善祥. 中华人民共和国国家军用标准-炸药试验方法: GJB772A—97[S]. 北京: 国防科工委军标出版发行部, 1997.
[14] La Haye E, Klerk W, Miszczak M, et al. Compatibility testing of energetic materials at TNO-PML and MIAT[J]. Journal of Thermal Analysis and Calorimetry, 2003, 72(3): 931-942.
[15] 董海山, 周芬芬. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989.
[16] 田德余, 赵凤起, 刘剑洪. 含能材料及相关物手册[M]. 北京: 国防工业出版社, 2011: 5, 40.
[17] 徐松林, 阳世清. 偶氮四唑非金属盐类含能材料的合成与性能研究[J]. 含能材料, 2006, 14(5): 377-380.
[18] Sillitto G P. Propellant chemistry[M]. New York: Sarner Stanley F. Reinhold Publishing Corporation, 1966.
文章导航

/