专题:科学思想和思维创新

智能时代呼唤新的科研方法

  • 李国杰
展开
  • 中国科学院计算技术研究所, 北京 100190

收稿日期: 2023-12-19

  修回日期: 2024-03-07

  网络出版日期: 2024-06-19

The intelligent era calls for new research methods

  • LI Guojie
Expand
  • Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2023-12-19

  Revised date: 2024-03-07

  Online published: 2024-06-19

摘要

智能化科研(AI4R)是科研方法的重大变革。提出科技界不仅要关注科学智能(AIfor Science,AI4S),更要重视技术智能(AI for Technology,AI4T);不仅要关注大语言模型(LLM),更要重视大科学模型(LSM)。同时提出,人工智能的突破主要不是靠大算力,而是计算模型的转变,中国应当争取在基础模型上做出颠覆性的创新;智能化科研适合做复杂问题的组合搜索,神经网络模型也许已接近能处理困难问题的复杂度阈值点;智能化科研的一种趋势是放弃绝对性,拥抱不确定性,一定时期内要适当容忍“黑盒模型”

本文引用格式

李国杰 . 智能时代呼唤新的科研方法[J]. 科技导报, 2024 , 42(10) : 40 -45 . DOI: 10.3981/j.issn.1000-7857.2023.12.01906

Abstract

AI for research (AI4R) is a significant change in research methods. The scientific and technological circles should not only pay attention to "AI for Science" (AI4S), but also attach great importance to "AI for Technology" (AI4T); Not only should we focus on the Large Language Model (LLM), but we should also pay more attention to the Large Science Model (LSM). The breakthrough of artificial intelligence mainly relies not on large computing power, but on the transformation of computational models. China should strive to make disruptive innovations on foundation models. AI4R is suitable for combinatorial search of complex problems, and neural network models may be close to the complexity threshold point that can handle difficult problems. One trend in AI4R is to abandon absoluteness, embrace uncertainty, and we should tolerate "black-box models" appropriately for a certain period of time.

参考文献

[1] 李国杰. 智能化科研(AI4R):第五科研范式[J]. 中国科学院院刊, 2024, 39(1): 1-9.
[2] Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596: 583-589.
[3] Guo Z Q, Lu D H, Yan Y J, et al. Extending the limit of molecular dynamics with ab initio accuracy to 10 billion atoms[C]. Seoul: Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2022: 205-218.
[4] Cheng S Y, Jin P W, Guo Q, et al. Pushing the limits of machine design: Automated CPU design with AI[J/OL]. [2023-12-19]. https://arxiv.org/abs/2306.12456.
[5] Lam R, Sanchez-Gonzalez A, Willson M, et al. Learning skillful medium-range global weather forecasting[J]. Science, 2023, 382(6677): 1416-1421.
[6] Merchant A, Batzner S, Schoenholz S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023, 624: 80-85.
[7] Copeland B J. The essential turing[M]. Oxford: Clarendon Press, 2004: 411-432.
[8] John von Neumann. Theory of self-reproducing automata [M]. Urbana and London: University of Illinois Press, 2002.
文章导航

/