[1] Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater:A review of the literature[J]. In-ternational Journal of Hygiene and Environmental Health, 2011, 214(6):442-448.
[2] Jarman W M, Ballschmiter K. From coal to DDT:The his-tory of the development of the pesticide DDT from syn-thetic dyes till Silent Spring[J]. Endeavour, 2012, 36(4):131-142.
[3] 韦正峥,向月皎,郭云,等.国内外新污染物环境管理政策分析与建议[J].环境科学研究, 2022, 35(2):443-451.
[4] 李秋爽,於方,曹国志,等.新污染物治理进展及"十四五"期间和长期治理思路研究[J].环境保护, 2021, 49(10):13-19.
[5] Rathi B S, Kumar P S, Show P L. A review on effective removal of emerging contaminants from aquatic systems:Current trends and scope for further research[J]. Journal of Hazardous Materials, 2021, 409:124413.
[6] Hu D F, Zhang Y X, Shen M C. Investigation on micro-plastic pollution of Dongting Lake and its affiliated rivers[J]. Marine Pollution Bulletin, 2020, 160:111555.
[7] Chen Y P, Xie H W, Junaid M, et al. Spatiotemporal dis-tribution, source apportionment and risk assessment of typical hormones and phenolic endocrine disrupting chem-icals in environmental and biological samples from the mariculture areas in the Pearl River Delta, China[J]. The Science of the Total Environment, 2022, 807:150752.
[8] 刘宝印,荀斌,黄宝荣,等.我国水环境中新污染物空间分布特征分析[J].环境保护, 2021, 49(10):25-30.
[9] 秦宇,李健鹏,毛鑫,等.膜分离技术去除水中新兴污染物的研究进展[J].水处理技术, 2023, 49(7):1-6.
[10] 陈玫宏,郭敏,刘丹,等.典型内分泌干扰物在太湖及其支流水体和沉积物中的污染特征[J].中国环境科学, 2017, 37(11):4323-4332.
[11] Yan M T, Nie H Y, Xu K H, et al. Microplastic abun-dance, distribution and composition in the Pearl River along Guangzhou city and Pearl River Estuary, China[J]. Chemosphere, 2019, 217:879-886.
[12] 武倩倩,吴强,宋帅,等.天津市主要河流和土壤中全氟化合物空间分布、来源及风险评价[J].环境科学, 2021, 42(8):3682-3694.
[13] Gao H, Zhao F Q, Li R J, et al. Occurrence and distribu-tion of antibiotics and antibiotic resistance genes in wa-ter of Liaohe River Basin, China[J]. Journal of Environ-mental Chemical Engineering, 2022, 10(5):108297.
[14] 韩迁,张玉娇,赖承钺,等.成都市典型流域抗生素分布特征及生态风险评价[J].生态毒理学报, 2023, 18(2):395-409.
[15] Sharma S, Basu S M, Shetti N P, et al. Microplastics in the environment:Occurrence, perils, and eradication[J]. Chemical Engineering Journal, 2021, 408:127317.
[16] Peng G Y, Xu P, Zhu B S, et al. Microplastics in fresh-water river sediments in Shanghai, China:A case study of risk assessment in mega-cities[J]. Environmental Pol-lution, 2018, 234:448-456.
[17] Xu P, Peng G Y, Su L, et al. Microplastic risk assess-ment in surface waters:A case study in the Changjiang Estuary, China[J]. Marine Pollution Bulletin, 2018, 133:647-654.
[18] Ye Y H, Zhang A G, Teng J, et al. Pollution characteris-tics and ecological risk of microplastic in sediments of Liaodong Bay from the northern Bohai Sea in China[J]. Marine Pollution Bulletin, 2023, 187:114505.
[19] Grobin A, Roškar R, Trontelj J. Multi-parameter risk as-sessment of forty-one selected substances with endo-crine disruptive properties in surface waters worldwide[J]. Chemosphere, 2022, 287:132195.
[20] Lu S, Lin C Y, Lei K, et al. Endocrine-disrupting chemicals in a typical urbanized bay of Yellow Sea, China:Distribution, risk assessment, and identification of priori-ty pollutants[J]. Environmental Pollution, 2021, 287:117588.
[21] Bacanlı M, Başaran N. Importance of antibiotic residues in animal food[J]. Food and Chemical Toxicology:An In-ternational Journal Published for the British Industrial Biological Research Association, 2019, 125:462-466.
[22] Wang T Y, Lu Y L, Chen C L, et al. Perfluorinated com-pounds in estuarine and coastal areas of North Bohai Sea, China[J]. Marine Pollution Bulletin, 2011, 62(8):1905-1914.
[23] 赵源,杨红菊,温雅君,等.京郊典型河流农用水中全氟化合物赋存特征、源解析及生态风险评估[J].农业资源与环境学报, 2024, 41(2):392-400.
[24] Li L, Liu D, Zhang Q, et al. Occurrence and ecological risk assessment of selected antibiotics in the freshwater lakes along the middle and lower reaches of Yangtze River Basin[J]. Journal of Environmental Management, 2019, 249:109396.
[25] Al-sareji O J, Meiczinger M, Somogyi V, et al. Removal of emerging pollutants from water using enzyme-immobi-lized activated carbon from coconut shell[J]. Journal of Environmental Chemical Engineering, 2023, 11(3):109803.
[26] Ngan T T K, Tran C, Tran T T N, et al. Optimization of ciprofloxacin adsorption onto CoFe-MOF aerogel cylin-ders based on response surface methodology:Adsorption kinetics, isotherm models[J]. Materials Science and Engi-neering:B, 2023, 297:116694.
[27] Qiu B B, Shao Q N, Shi J C, et al. Application of bio-char for the adsorption of organic pollutants from waste-water:Modification strategies, mechanisms and challeng-es[J]. Separation and Purification Technology, 2022, 300:121925.
[28] Wang H S, Yang J X, Zhang H, et al. Membrane-based technology in water and resources recovery from the per-spective of water social circulation:A review[J]. Science of the Total Environment, 2024, 908:168277.
[29] Zhou M Z, Chen J J, Yu S N, et al. The coupling of per-sulfate activation and membrane separation for the effec-tive pollutant degradation and membrane fouling allevia-tion[J]. Chemical Engineering Journal, 2023, 451:139009.
[30] Neves T D F, Camparotto N G, Rodrigues E A, et al. New graphene oxide-safranin modified@polyacrylonitrile membranes for removal of emerging contaminants:The role of chemical and morphological features[J]. Chemical Engineering Journal, 2022, 446:137176.
[31] Cui Z W, Wu J F, Wu T T, et al. Novel wood membrane decorated with covalent organic frameworks and palladi-um nanoparticles for reduction of aromatic organic con-taminants[J]. Separation and Purification Technology, 2023, 319:124112.
[32] Kumar R, Liu C J, Ha G S, et al. A novel membrane-in-tegrated sustainable technology for downstream recovery of molybdenum from industrial wastewater[J]. Resources, Conservation and Recycling, 2023, 196:107035.
[33] Bilińska L, Gmurek M, Ledakowicz S. Comparison be-tween industrial and simulated textile wastewater treat-ment by AOPs-Biodegradability, toxicity and cost as-sessment[J]. Chemical Engineering Journal, 2016, 306:550-559.
[34] Zhang S, Sun M, Hedtke T, et al. Mechanism of hetero-geneous Fenton reaction kinetics enhancement under na-noscale spatial confinement[J]. Environmental Science&Technology, 2020, 54(17):10868-10875.
[35] Wang L J, Yang T Y, Xu X Y, et al. Acid groups deco-rated bimetal-organic catalyst for advanced oxidation technology at full pH range[J]. Journal of Alloys and Compounds, 2023, 969:172370.
[36] Sergienko N, Lumbaque E C, Duinslaeger N, et al. Elec-trocatalytic removal of persistent organic contaminants at molybdenum doped manganese oxide coated TiO 2 nanotube-based anode[J]. Applied Catalysis B:En-vironmental, 2023, 334:122831.
[37] Xue Y T, Kamali M, Liyakat A, et al. A walnut shell bio-char-nano zero-valent iron composite membrane for the degradation of carbamazepine via persulfate activation[J]. Science of the Total Environment, 2023, 899:165535.
[38] Bao Y P, Lee W J, Lim T T, et al. Pore-functionalized ceramic membrane with isotropically impregnated cobalt oxide for sulfamethoxazole degradation and membrane fouling elimination:Synergistic effect between catalytic oxidation and membrane separation[J]. Applied Catalysis B:Environmental, 2019, 254:37-46.
[39] Chen L, Ren X M, Li Y X, et al. High flux Fe/activated carbon membranes for efficient degradation of organic pollutants in water by activating sodium persulfate[J]. Separation and Purification Technology, 2022, 285:120411.
[40] Wang J Q, Wang W M, Xiong J B, et al. A constructed wetland system with aquatic macrophytes for cleaning contaminated runoff/storm water from urban area in Flor-ida[J]. Journal of Environmental Management, 2021, 280:111794.
[41] Chen P P, Yu X F, Zhang J Y. Photocatalysis enhanced constructed wetlands effectively remove antibiotic resis-tance genes from domestic wastewater[J]. Chemosphere, 2023, 325:138330.
[42] Qin Z R, Zhao Z H, Jiao W T, et al. Phenanthrene re-moval and response of bacterial community in the com-bined system of photocatalysis and PAH-degrading mi-crobial consortium in laboratory system[J]. Bioresource Technology, 2020, 301:122736.
[43] Yu Q, Zhang R, Deng S, Huang J, et al. Sorption of per-fluorooctane sulfonate and perfluorooctanoate on activat-ed carbons and resin:Kinetic and isotherm study[J]. Wa-ter Research, 2009, 43(4):1150-1158.
[44] Romero V, Fernandes S P S, Kovář P, et al. Efficient ad-sorption of endocrine-disrupting pesticides from water with a reusable magnetic covalent organic framework[J]. Microporous and Mesoporous Materials, 2020, 307:110523.
[45] 陈金垒,龚佳昕,陈锦莉,等.昆布多糖-聚合氯化铝铁复配去除水中聚乙烯微塑料[J].环境化学, 2024, 43(4):1401.
[46] Huang B Q, Cui H G, Feng T Y, et al. Thin film com-posite polyamide nanofiltration membranes with interlay-er constructed with core-shell structured polystyrenepolyacrylamide nanospheres for antibiotics separation[J]. Journal of Water Process Engineering, 2024, 57:104550.
[47] Ma J, Wang Y, Xu H, et al. MXene (Ti3T2CX)-rein-forced thin-film polyamide nanofiltration membrane for short-chain perfluorinated compounds removal[J]. Pro-cess Safety and Environmental Protection, 2022, 168:275-284.
[48] Dai R, Han H, Wang T, et al. Enhanced removal of hy-drophobic endocrine disrupting compounds from waste-water by nanofiltration membranes intercalated with hy-drophilic MoS2 nanosheets:Role of surface properties and internal nanochannels[J]. Journal of Membrane Sci-ence, 2021, 628:119267.
[49] Kim S, Hyeon Y, Rho H, et al. Ceramic membranes as a potential high-performance alternative to microplastic filters for household washing machines[J]. Separation and Purification Technology, 2024, 344:127278.
[50] Banat F, Abu Haija M. Photoelectrochemical advanced oxidation processes for simultaneous removal of antibiot-ics and heavy metal ions in wastewater using 2D-on-2D WS 2@CoFe2O4 heteronanostructures[J]. Environmental Pollution, 2023, 339:122753.
[51] Li Z, Zhang P, Li J, et al. Synthesis of In2O3-graphene composites and their photocatalytic performance towards perfluorooctanoic acid decomposition[J]. Journal of Pho-tochemistry and Photobiology A:Chemistry, 2013, 271:111-116.
[52] Raj R, Tripathi A, Das S, et al. Waste coconut shell-de-rived carbon monolith as an efficient binder-free cath-ode for electrochemical advanced oxidation treatment of endocrine-disrupting compounds[J]. Journal of Environ-mental Management, 2023, 348:119328.
[53] Zanaty M, Zaki A H, El-Dek S I, et al. Zeolitic imidazo-late framework@hydrogen titanate nanotubes for efficient adsorption and catalytic oxidation of organic dyes and microplastics[J]. Journal of Environmental Chemical En-gineering, 2024, 12(3):112547
[54] Hu J, Tian J, Yang Y, et al. Enhanced antibiotic degra-dation via photo-assisted peroxymonosulfate over gra-phitic carbon nitride nanosheets/CuBi2O4:Highly effi-ciency of oxygen activation and interfacial charge trans-fer[J]. Journal of Colloid and Interface Science, 2024, 661:68-82.
[55] Zhang D, Li Y, Chen X, et al. Wide spectra-responsive Polypyrrole-Ag3PO4/BiPO4 co-coupled TiO2 nanotube ar-rays for intensified photoelectrocatalysis degradation of PFOA[J]. Separation and Purification Technology, 2022, 287:120521.
[56] Boutamine Z, Hamdaoui O, Merouani S. Sonochemical and photosonochemical degradation of endocrine disrup-tor 2-phenoxyethanol in aqueous media[J]. Separation and Purification Technology, 2018, 206:356-364.
[57] 邓义祥,雷坤,安立会,等.我国塑料垃圾和微塑料污染源头控制对策[J].中国科学院院刊, 2018, 33(10):1042-1051.
[58] 姜蕾.水环境中PPCPs类新型污染物监测及控制技术展望--新型污染物监测平台、污染源头识别及末端控制[J].净水技术, 2016, 35(6):1-5.
[59] 王佳钰,王中钰,陈景文,等.环境新污染物治理与化学品环境风险防控的系统工程[J].科学通报, 2022, 67(3):267-277.
[60] Sanchez M, Ramos D R, Fernandez M I, et al. Removal of emerging pollutants by a 3-step system:Hybrid di-gester, vertical flow constructed wetland and photodegra-dation post-treatments[J]. Science of the Total Environ-ment, 2022, 842:156750.
[61] Pereira L C, De Souza A O, Bernardes M F F, et al. A perspective on the potential risks of emerging contami-nants to human and environmental health[J]. Environ-mental Science and Pollution Research, 2015, 22(18):13800-13823.
[62] Mitra S, Chakraborty A J, Tareq A M, et al. Impact of heavy metals on the environment and human health:Novel therapeutic insights to counter the toxicity[J]. Jour-nal of King Saud University-Science, 2022, 34(3):101865.
[63] Zhu Y, Che R, Zong X, et al. A comprehensive review on the source, ingestion route, attachment and toxicity of microplastics/nanoplastics in human systems[J]. Journal of Environmental Management, 2024, 352:120039.
[64] Pang L, Li M, Dukureh A, et al. Association between prenatal perfluorinated compounds exposure and risk of pregnancy complications:A meta-analysis[J]. Ecotoxicol-ogy and Environmental Safety, 2024, 272:116017.
[65] Mathur P, Sanyal D, Callahan D L, et al. Treatment tech-nologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environ-ment and hu-man health[J]. Environmental Pollution, 2021, 291:118233.
[66] Fan Y, Pan D, Yang M, et al. Radiolabelling and in vivo radionuclide imaging tracking of emerging pollutants in environmental toxicology:A review[J]. Science of the To-tal Environment, 2023, 866:161412.
[67] Yamashita R, Nishio M, Do R K G, et al. Convolutional neural networks:An overview and application in radiolo-gy[J]. Insights into Imaging, 2018, 9(4):611-629.
[68] Wang X, Yu D, Ma L, et al. Using big data searching and machine learning to predict human health risk prob-ability from pesticide site soils in China[J]. Journal of Environmental Management, 2022, 320:115798.