专题:新污染物治理

新污染物抗生素菌渣环境污染防控策略

  • 周睫雅 ,
  • 侯立安 ,
  • 田书磊 ,
  • 王旭明
展开
  • 1. 北京师范大学环境学院, 北京 100875;
    2. 中国人民解放军96901部队23分队, 北京 100094;
    3. 中国环境科学研究院, 北京 100012;
    4. 北京市农林科学院生物技术研究所农业基因资源与生物技术北京市重点实验室, 北京 100097
周睫雅,博士研究生,研究方向为抗生素菌渣资源化利用环境风险评估,电子信箱:zhoujieyacyaney@163.com;侯立安(通信作者),中国工程院院士,正高级工程师,研究方向为饮用水安全保障、分散点源生活污水处理和人居环境空气净化等,电子信箱:h20091957@126.com引用格式:周睫雅,侯立安,田书磊,等.新污染物抗生素菌渣环境污染防控策略[J].科技导报,2024,42(11):29-35;doi:10.3981/j.issn.1000-7857.2024.01.00020

收稿日期: 2023-12-21

  修回日期: 2024-04-29

  网络出版日期: 2024-07-08

基金资助

国家重点研发项目(2017YFD0801420)

Environmental pollution prevention and control strategies for emerging contaminants: Antibiotic fermentation residues

  • ZHOU Jieya ,
  • HOU Li'an ,
  • TIAN Shulei ,
  • WANG Xuming
Expand
  • 1. School of Environment, Beijing Normal University, Beijing 100875, China;
    2. Detachment 23, Unit 96901 People's Liberation Army of China, Beijing 100094, China;
    3. Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
    4. Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Received date: 2023-12-21

  Revised date: 2024-04-29

  Online published: 2024-07-08

摘要

分析了我国面临的抗生素菌渣环境风险管控需求与当前的处理现状,讨论了符合我国国情的抗生素菌渣环境污染防控管理的重点和思路。为实现抗生素菌渣的环境风险长效管理,针对菌渣中污染物质的有效控制,提出了 3项关键策略:开展生产信息调查和危害筛查,持续调查评估,明确风险状况,并进行抗生素耐药风险评估;支持科技研究和技术的推广应用,加强抗生素生产企业与科研机构之间的协作,“产学研用”一体化,建立科技专项、加速监测预警方法的开发,并推动无害化处理与资源化利用的技术创新及其工程化应用;完善菌渣安全利用风险评价方法,通过实验室及大田试验探究抗性风险传播机制,并建立相应的资源化产品环境安全评价方法,以及资源化产物的流向管理与长期安全性监测制度,以全面推动抗生素产业的绿色转型和源头污染的有效防控。

本文引用格式

周睫雅 , 侯立安 , 田书磊 , 王旭明 . 新污染物抗生素菌渣环境污染防控策略[J]. 科技导报, 2024 , 42(11) : 29 -35 . DOI: 10.3981/j.issn.1000-7857.2024.01.00020

Abstract

Antibiotics have emerged as a significant contaminant, and gained increasing attention both domestically and internationally. In this study, the environmental risk management needs and the current handling situation of antibiotic fermentation residues are proposed to find out the key points and approaches to the management of antibiotic residue environmental pollution control that align with China's national conditions. To address long-term environmental risk management of antibiotic fermentation residues and effectively control the pollutants produced in the residues, three key strategies have been proposed. First, to conduct production information surveys and hazard screenings to continuously assess and clarify the risk situation including evaluating the risk of antibiotic resistance. Then, to support scientific research and the application of technology, enhance collaboration between antibiotic production enterprises and research institutions through an integrated approach of "industry-academia-research-application", develop specialized scientific projects, accelerate the development of monitoring and early warning methods, and promote the innovation and industrial application of technologies for harmless treatment and resource utilization. Last, to improve the risk evaluation methods for safe use of antibiotic fermentation residues, explore the mechanisms of resistance risk transmission through laboratory and field trials, and establish environmental safety evaluation methods for resource-based products, as well as management and long-term safety monitoring systems for the flow of resource-based products, to comprehensively promote the green transformation of the antibiotic industry and effective control of pollution at its source.

参考文献

[1] Ding L, Hu F P. China's new national action plan to com-bat antimicrobial resistance (2022-2025)[J]. The Journal of Antimicrobial Chemotherapy, 2023, 78(2):558-560.
[2] 李秋爽,於方,曹国志,等.新污染物治理进展及"十四五"期间和长期治理思路研究[J].环境保护, 2021, 49(10):13-19.
[3] Zhou J Y, Wu H, Shi L H, et al. Sustainable on-farm strategy for the disposal of antibiotic fermentation residue:Co-benefits for resource recovery and resistance mitiga-tion[J]. Journal of Hazardous Materials, 2023, 446:130705.
[4] 王晓红.微生物制药菌渣处理处置技术风险评价研究[D].哈尔滨:哈尔滨工业大学, 2012.
[5] Hernando-Amado S, Coque T M, Baquero F, et al. Defin-ing and combating antibiotic resistance from One Health and Global Health perspectives[J]. Nature Microbiology, 2019, 4(9):1432-1442.
[6] Joakim L D G, Flach C F. Antibiotic resistance in the en-vironment[J]. Nature Reviews Microbiology, 2022, 20(5):257-269.
[7] D'Costa V M, King C E, Kalan L, et al. Antibiotic resis-tance is ancient[J]. Nature, 2011, 477(7365):457-461.
[8] Zhang A N, Gaston J M, Dai C L, et al. An omics-based framework for assessing the health risk of antimicrobial re-sistance genes[J]. Nature Communications, 2021, 12(1):4765.
[9] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river ba-sins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science&Technology, 2015, 49(11):6772-6782.
[10] Rocha D C, da Silva R C, Santos T D, et al. Veterinary antibiotics and plant physiology:An overview[J]. The Science of the Total Environment, 2021, 767:144902.
[11] 石礼虎,吴昊,田书磊,等. β-内酰胺类菌渣肥对生菜根际土壤细菌及抗性基因的影响[J].环境科学研究, 2023, 36(4):773-782.
[12] Zhou J Y, Wu H, Wu Z R, et al. Erythromycin fermenta-tion residue exposure induces a short-term wave of anti-biotic resistance in a soil-lettuce system[J]. Science of the Total Environment, 2023, 902:166081.
[13] Li L, Li T L, Liu Y, et al. Effects of antibiotics stress on root development, seedling growth, antioxidant status and abscisic acid level in wheat (Triticum aestivum L)[J]. Ecotoxicology and Environmental Safety, 2023, 252:114621.
[14] Zhou J Y, Liu H B, Wu H, et al. Field tests of crop growth using hydrothermal and spray-dried cephalospo-rin mycelia dregs as amendments:Utilization of nutrient and soil antibiotic resistome[J]. Environmental Research, 2021, 202:111638.
[15] Gong P C, Liu H L, Wang G, et al. Enhanced depletion of antibiotics and accelerated estabilization of dissolved organic matter by hydrothermal pretreatment during com-posting of oxytetracycline fermentation residue[J]. Biore-source Technology, 2021, 339:125618.
[16] Gong P C, Liu H L, Xin Y J, et al. Composting of oxytet-racycline fermentation residue in combination with hy-drothermal pretreatment for reducing antibiotic resis-tance genes enrichment[J]. Bioresource Technology, 2020, 318:124271.
[17] Wang Y D, Zhao X M, Wang Y K, et al. Hydrothermal treatment enhances the removal of antibiotic resistance genes, dewatering, and biogas production in antibiotic fermentation residues[J]. Journal of Hazardous Materials, 2022, 435:128901.
[18] Gong P C, Liu H L, Wang M M, et al. Characteristics of hydrothermal treatment for the disintegration of oxytetra-cycline fermentation residue and inactivation of residual antibiotics[J]. Chemical Engineering Journal, 2020, 402:126011.
[19] Liu S Q, Hou X T, Xin Q, et al. Degradation of rifamy-cin from mycelial dreg by activated persulfate:Degrada-tion efficiency and reaction kinetics[J]. The Science of the Total Environment, 2022, 821:153229.
[20] Sun J Z, Wang G, Liu H L, et al. Influence of thermally activated peroxodisulfate pretreatment on gaseous emis-sion, dissolved organic matter and maturity evolution during spiramycin fermentation residue composting[J]. Bioresource Technology, 2022, 363:127964.
[21] Shi Y S, Pang B Y, Jia Y Y, et al. Improving antibiotic removal and anaerobic digestion performance of discard-ed cefradine pellets through thermo-alkaline pretreat-ment[J]. Journal of Hazardous Materials, 2024, 465:133394.
[22] Song S Q, Jiang M Y, Yao J, et al. Alkaline-thermal pre-treatment of spectinomycin mycelial residues:Insights on anaerobic biodegradability and the fate of antibiotic resistance genes[J]. Chemosphere, 2020, 261:127821.
[23] Jiang M Y, Song S Q, Liu H L, et al. Effect of gentami-cin mycelial residues disintegration by microwave-alka-line pretreatment on methane production and gentamicin degradation during anaerobic digestion[J]. Chemical En-gineering Journal, 2021, 414:128790.
[24] Zhou J Y, Wu Z R, Wang S, et al. Degradation perfor-mance and bioinformatic analysis of graphite electrode electrolysis cells for erythromycin fermentation residue[J]. Journal of Cleaner Production, 2023, 410:137289.
[25] Yin Y N, Wang J L. Enhanced medium-chain fatty ac-ids production from Cephalosporin C antibiotic fermenta-tion residues by ionizing radiation pretreatment[J]. Jour-nal of Hazardous Materials, 2022, 440:129714.
[26] Yin Y N, Lou T R, Song W Z, et al. Production of medi-um chain fatty acids from antibiotic fermentation residu-als pretreated by ionizing radiation:Elimination of anti-biotic resistance genes[J]. Bioresource Technology, 2023, 382:129180.
[27] Zhang Y T, Hao X Y, Thomas B W, et al. Soil antibiotic resistance genes accumulate at different rates over four decades of manure application[J]. Journal of Hazardous Materials, 2023, 443:130136.
[28] Li X D, Zhu L, Zhang S Y, et al. Characterization of mi-crobial contamination in agricultural soil:A public health perspective[J]. The Science of the Total Environment, 2024, 912:169139.
文章导航

/