[1] Xie B X, Qin J H, Sun H, et al. Release characteristics of polycyclic aromatic hydrocarbons (PAHs) leaching from oil-based drilling cuttings[J]. Chemosphere, 2022, 291:132711.
[2] Esmaeili A, Knox O, Juhasz A, et al. Advancing predic-tion of polycyclic aromatic hydrocarbon bioaccumulation in plants for historically contaminated soils using Lolium multiflorum and simple chemical in-vitro methodologies[J]. Science of the Total Environment, 2021, 772:144783.
[3] Košnář Z, Mercl F, Pierdonà L, et al. Concentration of the main persistent organic pollutants in sewage sludge in relation to wastewater treatment plant parameters and sludge stabilisation[J]. Environmental Pollution, 2023, 333:122060.
[4] Zhang X Y, Yu T, Li X, et al. The fate and enhanced re-moval of polycyclic aromatic hydrocarbons in wastewater and sludge treatment system:A review[J]. Critical Re-views in Environmental Science and Technology, 2019, 49(16):1425-1475.
[5] Shi Y F, Lu Y H, Zhang Y C, et al. Investigation into polycyclic aromatic hydrocarbons in sediments of Wei River Basin[J]. Water, Air,&Soil Pollution, 2021, 232(11):476.
[6] Liao X Y, Ma D, Yan X L, et al. Distribution pattern of polycyclic aromatic hydrocarbons in particle-size frac-tions of coking plant soils from different depth[J]. Environ-mental Geochemistry and Health, 2013, 35(3):271-282.
[7] Ke C L, Gu Y G, Liu Q. Polycyclic aromatic hydrocar-bons (PAHs) in exposed-lawn soils from 28 urban parks in the megacity Guangzhou:Occurrence, sources, and hu-man health implications[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(4):496-504.
[8] Ma L, Li Y H, Yao L, et al. Polycyclic aromatic hydrocar-bons in soil-turfgrass systems in urban Shanghai:Contam-ination profiles, in situ bioconcentration and potential health risks[J]. Journal of Cleaner Production, 2021, 289:125833.
[9] Qu Y J, Gong Y W, Ma J, et al. Potential sources, influ-encing factors, and health risks of polycyclic aromatic hy-drocarbons (PAHs) in the surface soil of urban parks in Beijing, China[J]. Environmental Pollution, 2020, 260:114016.
[10] Shi W J, Gong H, Zhou W Q, et al. Distribution and eco-logical risk of polycyclic aromatic hydrocarbons in waste-water treatment plant sludge and sewer sediment from cities in Middle and Lower Yangtze River[J]. The Sci-ence of the Total Environment, 2023, 881:163212.
[11] Patel A B, Shaikh S, Jain K R, et al. Polycyclic aromat-ic hydrocarbons:Sources, toxicity, and remediation ap-proaches[J]. Frontiers in Microbiology, 2020, 11:562813.
[12] Kour D, Kaur T, Devi R, et al. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability:Present status and fu-ture challenges[J]. Environmental Science and Pollution Research, 2021, 28(20):24917-24939.
[13] Dhar K, Subashchandrabose S R, Venkateswarlu K, et al. Anaerobic microbial degradation of polycyclic aromat-ic hydrocarbons:A comprehensive review[J]. Reviews of Environmental Contamination and Toxicology, 2020, 251:25-108.
[14] Zou X S, Su Q, Yi Q W, et al. Determining the degrada-tion mechanism and application potential of benzopy-rene-degrading bacterium Acinetobacter XS-4 by screening[J]. Journal of Hazardous Materials, 2023, 456:131666.
[15] Yang X N, Li E Z, Liu F F, et al. Interactions of PAHdegradation and nitrate-/sulfate-reducing assemblages in anaerobic sediment microbial community[J]. Journal of Hazardous Materials, 2020, 388:122068.
[16] Mou B L, Gong G Y, Wu S M. Biodegradation mecha-nisms of polycyclic aromatic hydrocarbons:Combination of instrumental analysis and theoretical calculation[J]. Chemosphere, 2023, 341:140017.
[17] Liang L, Song X H, Kong J, et al. Anaerobic biodegrada-tion of high-molecular-weight polycyclic aromatic hydro-carbons by a facultative anaerobe Pseudomonas sp. JP1[J]. Biodegradation, 2014, 25(6):825-833.
[18] Zain Ul Arifeen M, Ma Y N, Wu T S, et al. Anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungi isolated from anaerobic coal-associated sediments at 2.5 km below the seafloor[J]. Chemosphere, 2022, 303(2):135062.
[19] Qin W, Zhu Y, Fan F Q, et al. Biodegradation of benzo (a) pyrene by Microbacterium sp. strain under denitrifica-tion:Degradation pathway and effects of limiting elec-tron acceptors or carbon source[J]. Biochemical Engi-neering Journal, 2017, 121:131-138.
[20] Zhang Z T, Sun J, Gong X Q, et al. Anaerobic biodegra-dation of pyrene and benzo[a]pyrene by a new sulfate-re-ducing Desulforamulus aquiferis strain DSA[J]. Journal of Hazardous Materials, 2023, 459:132053.
[21] Yan Z S, Zhang Y, Wu H F, et al. Isolation and charac-terization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegra-dation[J]. RSC Advances, 2017, 7(74):46690-46698.
[22] Chen C, Zhang Z, Xu P, et al. Anaerobic biodegradation of polycyclic aromatic hydrocarbons[J]. Environmental Research, 2023, doi:10.1016/J.ENVRES.2023.115472.
[23] Qin W, Fan F Q, Zhu Y, et al. Anaerobic biodegradation of benzo (a) pyrene by a novel Cellulosimicrobium cellu-lans CWS2 isolated from polycyclic aromatic hydrocar-bon-contaminated soil[J]. Brazilian Journal of Microbiol-ogy, 2018, 49(2):258-268.
[24] Mu J, Leng Q X, Yang G F, et al. Anaerobic degrada-tion of high-concentration polycyclic aromatic hydrocar-bons (PAHs) in seawater sediments[J]. Marine Pollution Bulletin, 2021, 167:112294.
[25] Ye Q H, Zhang Z T, Huang Y, et al. Enhancing electron transfer by magnetite during phenanthrene anaerobic methanogenic degradation[J]. International Biodeteriora-tion&Biodegradation, 2018, 129:109-116.
[26] Silva-Castro G A, Rodelas B, Perucha C, et al. Bioreme-diation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like re-agents:Assays in a pilot plant[J]. The Science of the To-tal Environment, 2013, 445:347-355.
[27] Chi Z F, Hou L N, Li H, et al. Indigenous bacterial com-munity and function in phenanthrene-polluted coastal wetlands:Potential for phenanthrene degradation and re-lation with soil properties[J]. Environmental Research, 2021, 199:111357.
[28] Sun M Y, Dafforn K A, Johnston E L, et al. Core sedi-ment bacteria drive community response to anthropogen-ic contamination over multiple environmental gradients[J]. Environmental Microbiology, 2013, 15(9):2517-2531.
[29] 李伟,王华伟,孟祥宇,等. 3种氧化剂对焦化场地多环芳烃的修复效果与土著微生物的响应关系[J].环境科学, 2023, 44(12):6992-7003.
[30] Sazykin I S, Minkina T M, Grigoryeva T V, et al. PAHs distribution and cultivable PAHs degraders' biodiversity in soils and surface sediments of the impact zone of the Novocherkassk thermal electric power plant (Russia)[J]. Environmental Earth Sciences, 2019, 78(19):581.
[31] Martirani-Von Abercron S M, Pacheco D, Benito-Santa-no P, et al. Polycyclic aromatic hydrocarbon-induced changes in bacterial community structure under anoxic nitrate reducing conditions[J]. Frontiers in Microbiology, 2016, 7:1775.
[32] 班巧英,岳立峰,李建政,等.萘厌氧降解菌群的富集及氧化还原介体的强化[J].中国环境科学, 2020, 40(7):3150-3155.
[33] Rochman F F, Sheremet A, Tamas I, et al. Benzene and naphthalene degrading bacterial communities in an oil sands tailings pond[J]. Frontiers in Microbiology, 2017, 8:1845.
[34] Jurelevicius D, Pereira R D S, Da Mota F F, et al. Metagenomic analysis of microbial communities across a transect from low to highly hydrocarbon-contaminated soils in King George Island, Maritime Antarctica.[J]. Ge-obiology, 2021, 20(1):98-111.
[35] Smalley N E, Taipale S, De Marco P, et al. Functional and genomic diversity of methylotrophic Rhodocyclace-ae:description of Methyloversatilis discipulorum sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(7):2227-2233.
[36] Li C H, Wong Y S, Tam N F Y. Anaerobic biodegrada-tion of polycyclic aromatic hydrocarbons with amend-ment of iron (III) in mangrove sediment slurry[J]. Biore-source Technology, 2010, 101(21):8083-8092.
[37] Leng Q X, Mu J, Yang G F. Efficient anaerobic bioreme-diation of high-concentration benzo[a]pyrene in marine environments[J]. Environmental Pollution, 2021, 284:117210.
[38] 王慧,周海燕,黄勇,等.一株高环多环芳烃降解嗜盐菌Thalassospira sp.的分离及降解特性[J].清华大学学报(自然科学版), 2015, 55(1):87-92.
[39] 梁雪涛,苏俊杰,王震,等.两株菲降解菌的降解特性及动力学[J].净水技术, 2020, 39(2):40-48.
[40] 蔡瀚,尹华,叶锦韶,等. 1株苯并[a]芘高效降解菌的筛选与降解特性[J].环境科学, 2013, 34(5):1937-1944.
[41] Pathiraja G, Egodawatta P, Goonetilleke A, et al. Effec-tive degradation of polychlorinated biphenyls by a facul-tative anaerobic bacterial consortium using alternating anaerobic aerobic treatments[J]. Science of the Total En-vironment, 2019, 659:507-514.
[42] 刘聪洋,王美妮,张佳梦,等.一株多环芳烃降解菌及其在多种强化体系中降解菲的潜力[J].生物工程学报, 2021, 37(10):3696-3707.
[43] Kong X H, Dong R R, King T, et al. Biodegradation po-tential of Bacillus sp. PAH-2 on PAHs for oil-contami-nated seawater[J]. Molecules, 2022, 27(3):687.
[44] 吴宜霖,刘志号,孙仲平,等.温度对土壤中多环芳烃缺氧微生物降解的影响[J].环境科学与技术, 2022, 45(5):77-83.
[45] 李花,赵立坤,包仕钰,等.多环芳烃降解菌及其应用研究进展[J].环境工程技术学报, 2023, 13(5):1663-1676.
[46] Ali M, Song X, Ding D, et al. Bioremediation of PAHs and heavy metals co-contaminated soils:Challenges and enhancement strategies[J]. Environmental Pollution, 2022, 295:118686.
[47] 顾平,周启星,王鑫,等.一株苯并[a]芘降解菌-紫茉莉联合修复污染土壤的研究[J].环境科学学报, 2018, 38(4):1613-1620.
[48] 李景铭,佟梦晗,郭书海,等.多环芳烃和重金属复合污染土壤生物修复研究进展[J].生态学杂志, 2023, 42(12):2874-2884.
[49] Csonga R, Ettmayer P, Auer M, et al. Evaluation of the metal ion requirement of the human deoxyhypusine hy-droxylase from HeLa cells using a novel enzyme assay[J]. FEBS Letters, 1996, 380(3):209-214.
[50] Patel A B, Mahala K, Jain K, et al. Development of mixed bacterial cultures DAK11 capable for degrading mixture of polycyclic aromatic hydrocarbons (PAHs)[J]. Bioresource Technology, 2018, 253:288-296.
[51] Londry K L, Fedorak P M. Benzoic acid intermediates in the anaerobic biodegradation of phenols[J]. Canadian Journal of Microbiology, 1992, 38(1):1-11.
[52] Qiu Y L, Hanada S, Ohashi A, et al. Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured an-aerobe capable of degrading phenol to acetate in obli-gate syntrophic associations with a hydrogenotrophic methanogen[J]. Applied and Environmental Microbiolo-gy, 2008, 74(7):2051-2058.
[53] Nzila A, Musa M M. Current status of and future per-spectives in bacterial degradation of benzo[a]pyrene[J]. International Journal of Environmental Research and Public Health, 2020, 18(1):262.
[54] Birolli W G, de A Santos D, Alvarenga N, et al. Biodeg-radation of anthracene and several PAHs by the marinederived fungus Cladosporium sp. CBMAI 1237[J]. Ma-rine Pollution Bulletin, 2018, 129(2):525-533.