综述

布鲁氏菌病诊断标志物与治疗靶点研究进展

  • 王波 ,
  • 丁海涛
展开
  • 内蒙古自治区人民医院临床检验医学中心, 呼和浩特 010017
王波,副主任检验师,研究方向为感染免疫与临床检验,电子信箱:wangbo1558@126.com;丁海涛(通信作者),主任医师,研究方向为临床分子诊断,电子信箱:htdnmyy12@126.com

收稿日期: 2023-10-14

  修回日期: 2024-01-19

  网络出版日期: 2024-07-08

基金资助

内蒙古医学科学院公立医院科研联合基金科技项目(2023GLLH0060);内蒙古自治区卫生健康委员会医疗卫生科技计划项目(202201054)

Research progress on diagnosis markers and treatment targets of Brucellosis

  • WANG Bo ,
  • DING Haitao
Expand
  • Clinical Laboratory Medicine Center, Inner Mongolia People's Hospital, Hohhot 010017, China

Received date: 2023-10-14

  Revised date: 2024-01-19

  Online published: 2024-07-08

摘要

布鲁氏菌病(布病)是由布鲁氏杆菌感染引起的人畜共患传染病。从细胞、蛋白和基因3个层面综述了布病诊断标志物的研究进展,细胞水平的研究提示布鲁氏菌感染后的外周血巨噬细胞、T细胞的亚群特征,多形核中性粒细胞计数,以及巨噬细胞特殊能量代谢途径可辅助诊断布病;蛋白水平的研究提示重组布鲁氏菌外膜蛋白2b可辅助诊断布病;基因水平的研究提示某些微小RNA、长链非编码RNA可辅助诊断布病。从疫苗研发和新型蛋白质靶点2个层面综述了布病治疗靶点的研究进展,二磷酸脲苷-葡萄糖焦磷酸化酶是疫苗研发和药物制备的重要靶点,布鲁氏菌感染后的某些功能性效应蛋白可成为布病的潜在治疗靶点。

本文引用格式

王波 , 丁海涛 . 布鲁氏菌病诊断标志物与治疗靶点研究进展[J]. 科技导报, 2024 , 42(11) : 84 -91 . DOI: 10.3981/j.issn.1000-7857.2023.12.01927

Abstract

Brucellosis is a widespread zoonotic disease caused by Brucella infection, which poses a significant risk to both human and animal health. Despite efforts to control its spread, the incidence of brucellosis in China continues to rise. Unfortunately, due to the non-specific symptoms of brucellosis, misdiagnosis,and mistreatment often result in chronic and recurring illness, leading to a significant burden on the society. In this review, we summarize recent research progress on potential diagnosis markers of brucellosis from perspectives of proteins, genes, and cells, as well as potential treatment targets of brucellosis from perspectives of vaccine development and new type protein targets, providing a comprehensive summary of new knowledge and perspectives for the development of precise diagnostic and therapeutic strategies for brucellosis.

参考文献

[1] 罗波艳,聂守民,王曦迎,等.《布鲁氏菌病诊断》(WS 269-2019)标准应用的调查评价[J].中国人兽共患病学报, 2023, 39(5):509-514.
[2] 《中华传染病杂志》编辑委员会.布鲁菌病诊疗专家共识[J].中华传染病杂志, 2017, 35(12):705-710.
[3] Bosilkovski M, Keramat F, Arapović J. The current thera-peutical strategies in human brucellosis[J]. Infection, 2021, 49(5):823-832.
[4] Pappas G, Papadimitriou P, Akritidis N, et al. The new global map of human brucellosis[J]. The Lancet Infec-tious Diseases, 2006, 6(2):91-99.
[5] Zheng R J, Xie S S, Lu X B, et al. A systematic review and meta-analysis of epidemiology and clinical manifesta-tions of human brucellosis in China[J]. BioMed Research International, 2018, 2018:5712920.
[6] 张伟,刘岩,张志龙,等.内蒙地区农牧民布病防治知识及高危行为调查[J].华南预防医学, 2020, 46(3):257-259.
[7] 中国动物疫病预防控制中心,中国疾病预防控制中心.中国动物疫病预防控制中心、中国疾病预防控制中心关于印发《布鲁氏菌病防控技术要点(第一版)》的通知[BE/OL].(2023-01-10)[2023-07-03]. https://www.chi-nacdc.cn/jkzt/crb/zl/blsjb/cbw/202301/t20230110_263298.html.
[8] 李宛洋,黄天鹏,翟景波.人间布鲁菌病临床表现的研究进展[J].中国地方病防治, 2023, 38(2):95-97.
[9] Agin M, Kayar Y. Demographic, laboratory, and clinical comparison of pediatric Brucella cases with and without liver involvement[J]. Cureus, 2020, 12(10):e10862.
[10] Baykan A H, Sayiner H S, Inan I. Brucella and non-Bru-cella epididymo-orchitis:Comparison of ultrasound find-ings[J]. Medical Ultrasonography, 2019, 21(3):246.
[11] 耿兴花,吴其明,张素娟,等.布氏杆菌病肾损害的临床分析[J].中国实验诊断学, 2022, 26(6):803-805.
[12] Rodríguez A M, Delpino M V, Miraglia M C, et al. Im-mune mediators of pathology in neurobrucellosis:From blood to central nervous system[J]. Neuroscience, 2019, 410:264-273.
[13] Amjadi O, Rafiei A, Mardani M, et al. A review of the immunopathogenesis of Brucellosis[J]. Infectious Diseas-es, 2019, 51(5):321-333.
[14] Surendran N, Hiltbold E M, Heid B, et al. Role of TLRs in Brucella mediated murine DC activation in vitro and clearance of pulmonary infection in vivo[J]. Vaccine, 2012, 30(8):1502-1512.
[15] Oliaro J, Dudal S, Liautard J, et al. Vγ9Vδ2 T cells use a combination of mechanisms to limit the spread of the pathogenic bacteria Brucella[J]. Journal of Leukocyte Bi-ology, 2005, 77(5):652-660.
[16] Nauseef W M. How human neutrophils kill and degrade microbes:An integrated view[J]. Immunological Re-views, 2007, 219(1):88-102.
[17] Mirzaei R, Sholeh M, Jalalifar S, et al. Immunometabo-lism in human brucellosis:An emerging field of investi-gation[J]. Microbial Pathogenesis, 2021, 158:105115.
[18] Xavier M N, Winter M G, Spees A M, et al. PPARγ-me-diated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated mac-rophages[J]. Cell Host&Microbe, 2013, 14(2):159-170.
[19] Eisele N A, Ruby T, Jacobson A, et al. Salmonella re-quire the fatty acid regulator PPARδ for the establish-ment of a metabolic environment essential for long-term persistence[J]. Cell Host&Microbe, 2013, 14(2):171-182.
[20] Zheng R J, Xie S S, Zhang Q, et al. Circulating Th1, Th2, Th17, treg, and PD-1 levels in patients with bru-cellosis[J]. Journal of Immunology Research, 2019, 2019:3783209.
[21] Moreno E, Barquero-Calvo E. The role of neutrophils in brucellosis[J]. Microbiology and Molecular Biology Re-views, 2020, 84(4):e00020-e00048.
[22] Corrente M, Desario C, Parisi A, et al. Serological diag-nosis of bovine brucellosis using B. melitensis strain B115[J]. Journal of Microbiological Methods, 2015, 119:106-109.
[23] Vatankhah M, Beheshti N, Mirkalantari S, et al. Recom-binant Omp2b antigen-based ELISA is an efficient tool for specific serodiagnosis of animal brucellosis[J]. Brazil-ian Journal of Microbiology, 2019, 50(4):979-984.
[24] Becker G N, Tuon F F. Comparative study of IS711 and bcsp31-based polymerase chain reaction (PCR) for the diagnosis of human brucellosis in whole blood and se-rum samples[J]. Journal of Microbiological Methods, 2021, 183:106182.
[25] Kazemi S, Mirzaei R, Sholeh M, et al. MicroRNAs in hu-man brucellosis:A promising therapeutic approach and biomarker for diagnosis and treatment[J]. Immunity, In-flammation and Disease, 2021, 9(4):1209-1218.
[26] Zhu H P, Jiao H W, Nie X, et al. Alterations of microR-NAs and their predicted targeting mRNAs expression in RAW264.7 macrophages infected with Omp25 mutant Brucella melitensis[J]. Innate Immunity, 2018, 24(6):382-389.
[27] Budak F, Bal S H, Tezcan G, et al. The microRNA ex-pression signature of CD4+T cells in the transition of brucellosis into chronicity[J]. PLoS One, 2018, 13(6):e0198659.
[28] Kazemi S, Afshar S, Keramat F, et al. Assessment of as-sociation between miR-146a polymorphisms and expres-sion of miR-146a, TRAF-6, and IRAK-1 genes in pa-tients with brucellosis[J]. Molecular Biology Reports, 2022, 49(3):1995-2002.
[29] Deng X M, Guo J, Sun Z H, et al. Brucella-induced downregulation of lncRNA Gm28309 triggers macro-phages inflammatory response through the miR-3068-5p/NF-κB pathway[J]. Frontiers in Immunology, 2020, 11:581517.
[30] Janowicz A, De Massis F, Ancora M, et al. Core genome multilocus sequence typing and single nucleotide poly-morphism analysis in the epidemiology of Brucella meli-tensis infections[J]. Journal of Clinical Microbiology, 2018, 56(9):e00517-e00518.
[31] Rezaei M, Rabbani-khorasgani M, Zarkesh-Esfahani S H, et al. Prediction of the Omp16 epitopes for the devel-opment of an epitope-based vaccine against brucellosis[J]. Infectious Disorders-Drug Targets, 2019, 19(1):36-45.
[32] 杨艳玲,盛雪玲,唐婕,等.羊布鲁菌强毒株16M与疫苗株M5外膜蛋白蛋白质组学研究[J].中国兽医学报, 2010, 30(10):1334-1342.
[33] Zhou Y C, Bu Z Y, Qian J, et al. The UTP-glucose-1-phosphate uridylyltransferase of Brucella melitensis in-hibits the activation of NF-κB via regulating the bacteri-al type IV secretion system[J]. International Journal of Biological Macromolecules, 2020, 164:3098-3104.
[34] Ojo K K, Ranade R M, Zhang Z S, et al. Brucella meli-tensis methionyl-tRNA-synthetase (MetRS), a potential drug target for brucellosis[J]. PLoS One, 2016, 11(8):e0160350.
[35] Borghesan E, Smith E P, Myeni S, et al. A Brucella ef-fector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication[J]. The EMBO Journal, 2021, 40(19):e107664.
[36] Louche A, Blanco A, Santos Lacerda T L, et al. Brucella effectors NyxA and NyxB target SENP3 to modulate the subcellular localisation of nucleolar proteins[J]. Nature Communications, 2023, 14(1):102.
[37] Poetsch A, Marchesini M I. Proteomics of Brucella[J]. Proteomes, 2020, 8(2):8.
[38] Rahman N, Shah M, Muhammad I, et al. Genome-wide core proteome analysis of Brucella melitensis strains for potential drug target prediction[J]. Mini-Reviews in Me-dicinal Chemistry, 2021, 21(18):2778-2787.
[39] Khan K, Alhar M S O, Abbas M N, et al. Integrated bio-informatics-based subtractive genomics approach to de-cipher the therapeutic drug target and its possible inter-vention against brucellosis[J]. Bioengineering, 2022, 9(11):633.
[40] 健康中国行动(2019-2030年)[EB/OL].(2019-07-15)[2023-06-28] . https://www.gov.cn/xinwen/2019-07/15/content_5409694.html.
文章导航

/