[1] 罗波艳,聂守民,王曦迎,等.《布鲁氏菌病诊断》(WS 269-2019)标准应用的调查评价[J].中国人兽共患病学报, 2023, 39(5):509-514.
[2] 《中华传染病杂志》编辑委员会.布鲁菌病诊疗专家共识[J].中华传染病杂志, 2017, 35(12):705-710.
[3] Bosilkovski M, Keramat F, Arapović J. The current thera-peutical strategies in human brucellosis[J]. Infection, 2021, 49(5):823-832.
[4] Pappas G, Papadimitriou P, Akritidis N, et al. The new global map of human brucellosis[J]. The Lancet Infec-tious Diseases, 2006, 6(2):91-99.
[5] Zheng R J, Xie S S, Lu X B, et al. A systematic review and meta-analysis of epidemiology and clinical manifesta-tions of human brucellosis in China[J]. BioMed Research International, 2018, 2018:5712920.
[6] 张伟,刘岩,张志龙,等.内蒙地区农牧民布病防治知识及高危行为调查[J].华南预防医学, 2020, 46(3):257-259.
[7] 中国动物疫病预防控制中心,中国疾病预防控制中心.中国动物疫病预防控制中心、中国疾病预防控制中心关于印发《布鲁氏菌病防控技术要点(第一版)》的通知[BE/OL].(2023-01-10)[2023-07-03]. https://www.chi-nacdc.cn/jkzt/crb/zl/blsjb/cbw/202301/t20230110_263298.html.
[8] 李宛洋,黄天鹏,翟景波.人间布鲁菌病临床表现的研究进展[J].中国地方病防治, 2023, 38(2):95-97.
[9] Agin M, Kayar Y. Demographic, laboratory, and clinical comparison of pediatric Brucella cases with and without liver involvement[J]. Cureus, 2020, 12(10):e10862.
[10] Baykan A H, Sayiner H S, Inan I. Brucella and non-Bru-cella epididymo-orchitis:Comparison of ultrasound find-ings[J]. Medical Ultrasonography, 2019, 21(3):246.
[11] 耿兴花,吴其明,张素娟,等.布氏杆菌病肾损害的临床分析[J].中国实验诊断学, 2022, 26(6):803-805.
[12] Rodríguez A M, Delpino M V, Miraglia M C, et al. Im-mune mediators of pathology in neurobrucellosis:From blood to central nervous system[J]. Neuroscience, 2019, 410:264-273.
[13] Amjadi O, Rafiei A, Mardani M, et al. A review of the immunopathogenesis of Brucellosis[J]. Infectious Diseas-es, 2019, 51(5):321-333.
[14] Surendran N, Hiltbold E M, Heid B, et al. Role of TLRs in Brucella mediated murine DC activation in vitro and clearance of pulmonary infection in vivo[J]. Vaccine, 2012, 30(8):1502-1512.
[15] Oliaro J, Dudal S, Liautard J, et al. Vγ9Vδ2 T cells use a combination of mechanisms to limit the spread of the pathogenic bacteria Brucella[J]. Journal of Leukocyte Bi-ology, 2005, 77(5):652-660.
[16] Nauseef W M. How human neutrophils kill and degrade microbes:An integrated view[J]. Immunological Re-views, 2007, 219(1):88-102.
[17] Mirzaei R, Sholeh M, Jalalifar S, et al. Immunometabo-lism in human brucellosis:An emerging field of investi-gation[J]. Microbial Pathogenesis, 2021, 158:105115.
[18] Xavier M N, Winter M G, Spees A M, et al. PPARγ-me-diated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated mac-rophages[J]. Cell Host&Microbe, 2013, 14(2):159-170.
[19] Eisele N A, Ruby T, Jacobson A, et al. Salmonella re-quire the fatty acid regulator PPARδ for the establish-ment of a metabolic environment essential for long-term persistence[J]. Cell Host&Microbe, 2013, 14(2):171-182.
[20] Zheng R J, Xie S S, Zhang Q, et al. Circulating Th1, Th2, Th17, treg, and PD-1 levels in patients with bru-cellosis[J]. Journal of Immunology Research, 2019, 2019:3783209.
[21] Moreno E, Barquero-Calvo E. The role of neutrophils in brucellosis[J]. Microbiology and Molecular Biology Re-views, 2020, 84(4):e00020-e00048.
[22] Corrente M, Desario C, Parisi A, et al. Serological diag-nosis of bovine brucellosis using B. melitensis strain B115[J]. Journal of Microbiological Methods, 2015, 119:106-109.
[23] Vatankhah M, Beheshti N, Mirkalantari S, et al. Recom-binant Omp2b antigen-based ELISA is an efficient tool for specific serodiagnosis of animal brucellosis[J]. Brazil-ian Journal of Microbiology, 2019, 50(4):979-984.
[24] Becker G N, Tuon F F. Comparative study of IS711 and bcsp31-based polymerase chain reaction (PCR) for the diagnosis of human brucellosis in whole blood and se-rum samples[J]. Journal of Microbiological Methods, 2021, 183:106182.
[25] Kazemi S, Mirzaei R, Sholeh M, et al. MicroRNAs in hu-man brucellosis:A promising therapeutic approach and biomarker for diagnosis and treatment[J]. Immunity, In-flammation and Disease, 2021, 9(4):1209-1218.
[26] Zhu H P, Jiao H W, Nie X, et al. Alterations of microR-NAs and their predicted targeting mRNAs expression in RAW264.7 macrophages infected with Omp25 mutant Brucella melitensis[J]. Innate Immunity, 2018, 24(6):382-389.
[27] Budak F, Bal S H, Tezcan G, et al. The microRNA ex-pression signature of CD4+T cells in the transition of brucellosis into chronicity[J]. PLoS One, 2018, 13(6):e0198659.
[28] Kazemi S, Afshar S, Keramat F, et al. Assessment of as-sociation between miR-146a polymorphisms and expres-sion of miR-146a, TRAF-6, and IRAK-1 genes in pa-tients with brucellosis[J]. Molecular Biology Reports, 2022, 49(3):1995-2002.
[29] Deng X M, Guo J, Sun Z H, et al. Brucella-induced downregulation of lncRNA Gm28309 triggers macro-phages inflammatory response through the miR-3068-5p/NF-κB pathway[J]. Frontiers in Immunology, 2020, 11:581517.
[30] Janowicz A, De Massis F, Ancora M, et al. Core genome multilocus sequence typing and single nucleotide poly-morphism analysis in the epidemiology of Brucella meli-tensis infections[J]. Journal of Clinical Microbiology, 2018, 56(9):e00517-e00518.
[31] Rezaei M, Rabbani-khorasgani M, Zarkesh-Esfahani S H, et al. Prediction of the Omp16 epitopes for the devel-opment of an epitope-based vaccine against brucellosis[J]. Infectious Disorders-Drug Targets, 2019, 19(1):36-45.
[32] 杨艳玲,盛雪玲,唐婕,等.羊布鲁菌强毒株16M与疫苗株M5外膜蛋白蛋白质组学研究[J].中国兽医学报, 2010, 30(10):1334-1342.
[33] Zhou Y C, Bu Z Y, Qian J, et al. The UTP-glucose-1-phosphate uridylyltransferase of Brucella melitensis in-hibits the activation of NF-κB via regulating the bacteri-al type IV secretion system[J]. International Journal of Biological Macromolecules, 2020, 164:3098-3104.
[34] Ojo K K, Ranade R M, Zhang Z S, et al. Brucella meli-tensis methionyl-tRNA-synthetase (MetRS), a potential drug target for brucellosis[J]. PLoS One, 2016, 11(8):e0160350.
[35] Borghesan E, Smith E P, Myeni S, et al. A Brucella ef-fector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication[J]. The EMBO Journal, 2021, 40(19):e107664.
[36] Louche A, Blanco A, Santos Lacerda T L, et al. Brucella effectors NyxA and NyxB target SENP3 to modulate the subcellular localisation of nucleolar proteins[J]. Nature Communications, 2023, 14(1):102.
[37] Poetsch A, Marchesini M I. Proteomics of Brucella[J]. Proteomes, 2020, 8(2):8.
[38] Rahman N, Shah M, Muhammad I, et al. Genome-wide core proteome analysis of Brucella melitensis strains for potential drug target prediction[J]. Mini-Reviews in Me-dicinal Chemistry, 2021, 21(18):2778-2787.
[39] Khan K, Alhar M S O, Abbas M N, et al. Integrated bio-informatics-based subtractive genomics approach to de-cipher the therapeutic drug target and its possible inter-vention against brucellosis[J]. Bioengineering, 2022, 9(11):633.
[40] 健康中国行动(2019-2030年)[EB/OL].(2019-07-15)[2023-06-28] . https://www.gov.cn/xinwen/2019-07/15/content_5409694.html.