[1] Vissers L E L M, de Vries B B A, Osoegawa K, et al. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities[J]. American Journal of Human Genetics, 2003, 73(6):1261-1270.
[2] Consortium I H. The international HapMap Project[J]. Nature, 2003, 426(6968):789-796.
[3] Frazer K A, Ballinger D G, Cox D R, et al. A second generation human haplotype map of over 3.1 million SNPs[J]. Nature, 2007, 449(7164):851-861.
[4] Lander E S, Linton L M, Birren B, et al. Initial sequencing and analysis of the human genome[J]. Nature, 2001, 409(6822):860-921.
[5] Wheeler D A, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing[J]. Nature, 2008, 452(7189):872-876.
[6] Ng S B, Turner E H, Robertson P D, et al. Targeted capture and massively parallel sequencing of 12 human exomes[J]. Nature, 2009, 461(7261):272-276.
[7] Pennisi E. A $100 genome? New DNA sequencers could be a 'game changer' for biology, medicine[EB/OL].[2022-03-01]. https://www.science.org/content/article/100-genome-new-dna-sequencers-could-be-game-changer-biology-medicine.
[8] Wang Y H, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications[J]. Nature Biotechnology, 2021, 39(11):1348-1365.
[9] Patel A P, Wang M X, Ruan Y F, et al. A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease[J]. Nature Medicine, 2023, 29(7):1793-1803.
[10] Cedar H, Bergman Y. Linking DNA methylation and histone modification:Patterns and paradigms[J]. Nature Reviews Genetics, 2009, 10(5):295-304.
[11] Loyfer N, Magenheim J, Peretz A, et al. A DNA methylation atlas of normal human cell types[J]. Nature, 2023, 613(7943):355-364.
[12] Weber M, Davies J J, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells[J]. Nature Genetics, 2005, 37(8):853-862.
[13] Simpson J T, Workman R E, Zuzarte P C, et al. Detecting DNA cytosine methylation using nanopore sequencing[J]. Nature Methods, 2017, 14(4):407-410.
[14] Yousefi P D, Suderman M, Langdon R, et al. DNA methylation-based predictors of health:Applications and statistical considerations[J]. Nature Reviews Genetics, 2022, 23(6):369-383.
[15] Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing[J]. Nature Reviews Genetics, 2018, 19(6):371-384.
[16] Apicella C, Ruano C S M, Méhats C, et al. The role of epigenetics in placental development and the etiology of preeclampsia[J]. International Journal of Molecular Sciences, 2019, 20(11):2837.
[17] Lim U, Song M A. Dietary and lifestyle factors of DNA methylation[J]. Methods in Molecular Biology, 2012, 863:359-376.
[18] Rozek L S, Dolinoy D C, Sartor M A, et al. Epigenetics:Relevance and implications for public health[J]. Annual Review of Public Health, 2014, 35:105-122.
[19] Wang Z, Gerstein M, Snyder M. RNA-Seq:A revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1):57-63.
[20] Byron S A, Van Keuren-Jensen K R, Engelthaler D M,et al. Translating RNA sequencing into clinical diagnostics:Opportunities and challenges[J]. Nature Reviews Genetics, 2016, 17(5):257-271.
[21] Stark R, Grzelak M, Hadfield J. RNA sequencing:The teenage years[J]. Nature Reviews Genetics, 2019, 20(11):631-656.
[22] Sparano J A, Gray R J, Makower D F, et al. Prospective validation of a 21-gene expression assay in breast cancer[J]. The New England Journal of Medicine, 2015, 373(21):2005-2014.
[23] Dear R, Wagstyl K, Seidlitz J, et al. Cortical gene expression architecture links healthy neurodevelopment to the imaging, transcriptomics and genetics of autism and schizophrenia[J]. Nature Neuroscience, 2024, 27(6):1075-1086.
[24] Crist A M, Hinkle K M, Wang X, et al. Transcriptomic analysis to identify genes associated with selective hippocampal vulnerability in Alzheimer's disease[J]. Nature Communications, 2021, 12(1):2311.
[25] de Goede O M, Nachun D C, Ferraro N M, et al. Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease[J]. Cell, 2021, 184(10):2633-2648.e19.
[26] Tang F C, Barbacioru C, Wang Y Z, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nature Methods, 2009, 6(5):377-382.
[27] Stegle O, Teichmann S A, Marioni J C. Computational and analytical challenges in single-cell transcriptomics[J]. Nature Reviews Genetics, 2015, 16(3):133-145.
[28] Regev A, Teichmann S A, Lander E S, et al. The human cell atlas[J]. Elife, 2017, 6:e27041.
[29] Insel T R, Landis S C, Collins F S. Research priorities. The NIH BRAIN initiative[J]. Science, 2013, 340(6133):687-688.
[30] Montoro D T, Haber A L, Biton M, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes[J]. Nature, 2018, 560(7718):319-324.
[31] Young M D, Mitchell T J, Vieira Braga F A, et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors[J]. Science, 2018, 361(6402):594-599.
[32] Chen J, Suo S B, Tam P P, et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq[J]. Nature Protocols, 2017, 12(3):566-580.
[33] Lein E, Borm L E, Linnarsson S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing[J]. Science, 2017, 358(6359):64-69.
[34] Karras P, Bordeu I, Pozniak J, et al. A cellular hierarchy in melanoma uncouples growth and metastasis[J]. Nature, 2022, 610(7930):190-198.
[35] Suhre K, McCarthy M I, Schwenk J M. Genetics meets proteomics:Perspectives for large population-based studies[J]. Nature Reviews Genetics, 2021, 22(1):19-37.
[36] Assarsson E, Lundberg M, Holmquist G, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability[J]. PLoS One, 2014, 9(4):e95192.
[37] Jia J L, Jin J P, Chen Q, et al. Eukaryotic expression, Co-IP and MS identify BMPR-1B protein-protein interaction network[J]. Biological Research, 2020, 53(1):24.
[38] Mann M, Jensen O N. Proteomic analysis of post-translational modifications[J]. Nature Biotechnology, 2003, 21(3):255-261.
[39] Rosenberger G, Liu Y S, Röst H L, et al. Inference and quantification of peptidoforms in large sample cohorts by SWATH-MS[J]. Nature Biotechnology, 2017, 35(8):781-788.
[40] Newgard C B. Metabolomics and metabolic diseases:Where do we stand?[J]. Cell Metabolism, 2017, 25(1):43-56.
[41] Viant M R, Rosenblum E S, Tieerdema R S. NMRbased metabolomics:A powerful approach for characterizing the effects of environmental stressors on organism health[J]. Environmental Science & Technology, 2003, 37(21):4982-4989.
[42] Kennedy A D, Wittmann B M, Evans A M, et al. Metabolomics in the clinic:A review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing[J]. Journal of Mass Spectrometry, 2018, 53(11):1143-1154.
[43] Würtz P, Kangas A J, Soininen P, et al. Quantitative serum nuclear magnetic resonance metabolomics in largescale epidemiology:A primer on-omic technologies[J]. American Journal of Epidemiology, 2017, 186(9):1084-1096.
[44] Tasoglu S. Toilet-based continuous health monitoring using urine[J]. Nature Reviews Urology, 2022, 19(4):219-230.
[45] Wishart D S, Guo A C, Oler E, et al. HMDB 5.0:The human metabolome database for 2022[J]. Nucleic Acids Research, 2022, 50(D1):D622-D631.
[46] Pace N R. A molecular view of microbial diversity and the biosphere[J]. Science, 1997, 276(5313):734-740.
[47] Claesson M J, Wang Q, O'Sullivan O, et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions[J]. Nucleic Acids Research, 2010, 38(22):e200.
[48] Qin J J, Li R Q, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65.
[49] Heinken A, Hertel J, Acharya G, et al. Genome-scale metabolic reconstruction of 7302 human microorganisms for personalized medicine[J]. Nature Biotechnology, 2023, 41(9):1320-1331.
[50] Garza D R, van Verk M C, Huynen M A, et al. Towards predicting the environmental metabolome from metagenomics with a mechanistic model[J]. Nature Microbiology, 2018, 3(4):456-460.
[51] Hattori N, Yamashiro Y. The gut-brain axis[J]. Annals of Nutrition and Metabolism, 2021, 77(Suppl. 2):1-3.
[52] Yap C X, Henders A K, Alvares G A, et al. Autism-related dietary preferences mediate autism-gut microbiome associations[J]. Cell, 2021, 184(24):5916-5931. e17.
[53] Tilg H, Adolph T E, Trauner M. Gut-liver axis:Pathophysiological concepts and clinical implications[J]. Cell Metabolism, 2022, 34(11):1700-1718.
[54] Andoh A, Nishida A. Alteration of the gut microbiome in inflammatory bowel disease[J]. Digestion, 2023, 104(1):16-23.
[55] Nichols R G, Peters J M, Patterson A D. Interplay between the host, the human microbiome, and drug metabolism[J]. Human Genomics, 2019, 13(1):27.
[56] Wilmanski T, Kornilov S A, Diener C, et al. Heterogeneity in statin responses explained by variation in the human gut microbiome[J]. Med, 2022, 3(6):388-405.e6.
[57] Wilmanski T, Rappaport N, Diener C, et al. From taxonomy to metabolic output:What factors define gut microbiome health?[J]. Gut Microbes, 2021, 13(1):1-20.
[58] Abdill R J, Adamowicz E M, Blekhman R. Public human microbiome data are dominated by highly developed countries[J]. PLoS Biology, 2022, 20(2):e3001536.
[59] van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology:The path to the clinic[J]. Nature Medicine, 2021, 27(5):775-784.
[60] Littlejohns T J, Holliday J, Gibson L M, et al. The UK Biobank imaging enhancement of 100, 000 participants:Rationale, data collection, management and future directions[J]. Nature Communications, 2020, 11:2624.
[61] Hamer M, Batty G D. Association of body mass index and waist-to-hip ratio with brain structure:UK Biobank study[J]. Neurology, 2019, 92(6):e594-e600.
[62] Cox S R, Lyall D M, Ritchie S J, et al. Associations between vascular risk factors and brain MRI indices in UK Biobank[J]. European Heart Journal, 2019, 40(28):2290-2300.
[63] Woodbridge S P, Aung N, Paiva J M, et al. Physical activity and left ventricular trabeculation in the UK Biobank community-based cohort study[J]. Heart, 2019, 105(13):990-998.
[64] Jensen M T, Fung K, Aung N, et al. Changes in cardiac morphology and function in individuals with diabetes mellitus:The UK biobank cardiovascular magnetic resonance substudy[J]. Circulation Cardiovascular Imaging, 2019, 12(9):e009476.
[65] Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank[J]. Nature, 2022, 604(7907):697-707.
[66] Guo J, Yu K, Dong S S, et al. Mendelian randomization analyses support causal relationships between brain imaging-derived phenotypes and risk of psychiatric disorders[J]. Nature Neuroscience, 2022, 25(11):1519-1527.
[67] Mayerhoefer M E, Materka A, Langs G, et al. Introduction to radiomics[J]. Journal of Nuclear Medicine, 2020, 61(4):488-495.
[68] Ip J E. Wearable devices for cardiac rhythm diagnosis and management[J]. JAMA, 2019, 321(4):337-338.
[69] Ates H C, Nguyen P Q, Gonzalez-Macia L, et al. Endto-end design of wearable sensors[J]. Nature Reviews Materials, 2022, 7(11):887-907.
[70] Öhman F, Hassenstab J, Berron D, et al. Current advances in digital cognitive assessment for preclinical Alzheimer's disease[J]. Alzheimer's & Dementia:Diagnosis, Assessment & Disease Monitoring, 2021, 13(1):e12217-e12217.
[71] Klein R J, Zeiss C, Chew E Y, et al. Complement factor H polymorphism in age-related macular degeneration[J]. Science, 2005, 308(5720):385-389.
[72] Abdellaoui A, Yengo L, Verweij K J H, et al. 15 years of GWAS discovery:Realizing the promise[J]. American Journal of Human Genetics, 2023, 110(2):179-194.
[73] Sollis E, Mosaku A, Abid A, et al. The NHGRI-EBI GWAS Catalog:Knowledgebase and deposition resource[J]. Nucleic Acids Research, 2023, 51(D1):D977-D985.
[74] Mishra A, Malik R, Hachiya T, et al. Stroke genetics informs drug discovery and risk prediction across ancestries[J]. Nature, 2022, 611(7934):115-123.
[75] Yengo L, Vedantam S, Marouli E, et al. A saturated map of common genetic variants associated with human height[J]. Nature, 2022, 610(7933):704-712.
[76] Liu M Z, Jiang Y, Wedow R, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use[J]. Nature Genetics, 2019, 51(2):237-244.
[77] Lee J J, Wedow R, Okbay A, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals[J]. Nature Genetics, 2018, 50(8):1112-1121.
[78] Evangelou E, Warren H R, Mosen-Ansorena D, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits[J]. Nature Genetics, 2018, 50(10):1412-1425.
[79] Li Y, Sidore C, Kang H M, et al. Low-coverage sequencing:Implications for design of complex trait association studies[J]. Genome Research, 2011, 21(6):940-951.
[80] Huang S J, Liu S Y, Huang M X, et al. The Born in Guangzhou Cohort Study enables generational genetic discoveries[J]. Nature, 2024, 626(7999):565-573.
[81] Liu S Y, Huang S J, Chen F, et al. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history[J]. Cell, 2018, 175(2):347-359.
[82] Peterson R E, Kuchenbaecker K, Walters R K, et al. Genome-wide association studies in ancestrally diverse populations:Opportunities, methods, pitfalls, and recommendations[J]. Cell, 2019, 179(3):589-603.
[83] Campos A I, Namba S, Lin S C, et al. Boosting the power of genome-wide association studies within and across ancestries by using polygenic scores[J]. Nature Genetics, 2023, 55(10):1769-1776.
[84] Slatkin M. Linkage disequilibrium:Understanding the evolutionary past and mapping the medical future[J]. Nature Reviews Genetics, 2008, 9(6):477-485.
[85] ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489(7414):57-74.
[86] Bulik-Sullivan B, Finucane H K, Anttila V, et al. An atlas of genetic correlations across human diseases and traits[J]. Nature Genetics, 2015, 47(11):1236-1241.
[87] Musunuru K, Strong A, Frank-Kamenetsky M, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus[J]. Nature, 2010, 466(7307):714-719.
[88] Claussnitzer M, Dankel S N, Kim K H, et al. FTO obesity variant circuitry and adipocyte browning in humans[J]. The New England Journal of Medicine, 2015, 373(10):895-907.
[89] Smemo S, Tena J J, Kim K H, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3[J]. Nature, 2014, 507(7492):371-375.
[90] Sekar A, Bialas A R, de Rivera H, et al. Schizophrenia risk from complex variation of complement component 4[J]. Nature, 2016, 530(7589):177-183.
[91] Gupta R M, Hadaya J, Trehan A, et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression[J]. Cell, 2017, 170(3):522-533.e15.
[92] Kundaje A, Meuleman W, Ernst J, et al. Integrative analysis of 111 reference human epigenomes[J]. Nature, 2015, 518(7539):317-330.
[93] Farh K K H, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants[J]. Nature, 2015, 518(7539):337-343.
[94] Tansey K E, Cameron D, Hill M J. Genetic risk for Alzheimer's disease is concentrated in specific macrophage and microglial transcriptional networks[J]. Genome Medicine, 2018, 10(1):14.
[95] Battle A, Brown C D, Engelhardt B E, et al. Genetic effects on gene expression across human tissues[J]. Nature, 2017, 550(7675):204-213.
[96] HuBMAP Consortium. The human body at cellular resolution:The NIH Human Biomolecular Atlas Program[J]. Nature, 2019, 574(7777):187-192.
[97] Bulik-Sullivan B K, Loh P R, Finucane H K, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies[J]. Nature Genetics, 2015, 47(3):291-295.
[98] Giambartolomei C, Vukcevic D, Schadt E E, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics[J]. PLoS Genetics, 2014, 10(5):e1004383.
[99] Patwardhan R P, Lee C, Litvin O, et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis[J]. Nature Biotechnology, 2009, 27(12):1173-1175.
[100] Potting C, Crochemore C, Moretti F, et al. Genomewide CRISPR screen for PARKIN regulators reveals transcriptional repression as a determinant of mitophagy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(2):E180-E189.
[101] Fulco C P, Nasser J, Jones T R, et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations[J]. Nature Genetics, 2019, 51(12):1664-1669.
[102] Komor A C, Kim Y B, Packer M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424.
[103] Findlay G M, Daza R M, Martin B, et al. Accurate classification of BRCA1 variants with saturation genome editing[J]. Nature, 2018, 562(7726):217-222.
[104] Feldman D, Singh A, Schmid-Burgk J L, et al. Optical pooled screens in human cells[J]. Cell, 2019, 179(3):787-799.
[105] Dixit A, Parnas O, Li B Y, et al. Perturb-seq:Dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens[J]. Cell, 2016, 167(7):1853-1866.
[106] Datlinger P, Rendeiro A F, Schmidl C, et al. Pooled CRISPR screening with single-cell transcriptome readout[J]. Nature Methods, 2017, 14(3):297-301.
[107] Choi S W, Mak T S H, O'Reilly P F. Tutorial:A guide to performing polygenic risk score analyses[J]. Nature Protocols, 2020, 15(9):2759-2772.
[108] Torkamani A, Wineinger N E, Topol E J. The personal and clinical utility of polygenic risk scores[J]. Nature Reviews Genetics, 2018, 19(9):581-590.
[109] Zhang H Y, Zhan J N, Jin J, et al. A new method for multiancestry polygenic prediction improves performance across diverse populations[J]. Nature Genetics, 2023, 55(10):1757-1768.
[110] Ruan Y F, Lin Y F, Feng Y C A, et al. Improving polygenic prediction in ancestrally diverse populations[J]. Nature Genetics, 2022, 54(5):573-580.
[111] Amariuta T, Ishigaki K, Sugishita H, et al. Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements[J]. Nature Genetics, 2020, 52(12):1346-1354.
[112] Smith G D, Ebrahim S. 'Mendelian randomization':Can genetic epidemiology contribute to understanding environmental determinants of disease?[J]. International Journal of Epidemiology, 2003, 32(1):1-22.
[113] Pingault J B, O'Reilly P F, Schoeler T, et al. Using genetic data to strengthen causal inference in observational research[J]. Nature Reviews Genetics, 2018, 19:566-580.
[114] Ference B A, Kastelein J J P, Ginsberg H N, et al. Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk[J]. JAMA, 2017, 318(10):947-956.
[115] Ference B A, Ray K K, Catapano A L, et al. Mendelian randomization study of ACLY and cardiovascular disease[J]. New England Journal of Medicine, 2019, 380(11):1033-1042.
[116] Ference B A, Yoo W, Alesh I, et al. Effect of longterm exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease:A Mendelian randomization analysis[J]. Journal of the American College of Cardiology, 2012, 60(25):2631-2639.
[117] Holmes M V, Richardson T G, Ference B A, et al. Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development[J]. Nature Reviews Cardiology, 2021, 18(6):435-453.
[118] Ridker P M, Everett B M, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. The New England Journal of Medicine, 2017, 377(12):1119-1131.
[119] Sanderson E, Glymour M M, Holmes M V, et al. Mendelian randomization[J]. Nature Reviews Methods Primers, 2022, 2:6.
[120] Sanderson E. Multivariable Mendelian randomization and mediation[J]. Cold Spring Harbor Perspectives in Medicine, 2021, 11(2):a038984.
[121] Sanderson E, Davey Smith G, Windmeijer F, et al. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings[J]. International Journal of Epidemiology, 2019, 48(3):713-727.
[122] Burgess S, Thompson S G. Avoiding bias from weak instruments in Mendelian randomization studies[J]. International Journal of Epidemiology, 2011, 40(3):755-764.
[123] Rees J M B, Wood A M, Burgess S. Extending the MREgger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy[J]. Statistics in Medicine, 2017, 36(29):4705-4718.
[124] Gomes B, Ashley E A. Artificial intelligence in molecular medicine[J]. The New England Journal of Medicine, 2023, 388(26):2456-2465.
[125] Poplin R, Chang P C, Alexander D, et al. A universal SNP and small-indel variant caller using deep neural networks[J]. Nature Biotechnology, 2018, 36(10):983-987.
[126] DePristo M A, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data[J]. Nature Genetics, 2011, 43(5):491-498.
[127] Birgmeier J, Haeussler M, Deisseroth C A, et al. AMELIE speeds Mendelian diagnosis by matching patient phenotype and genotype to primary literature[J]. Science Translational Medicine, 2020, 12(544):eaau9113.
[128] De La Vega F M, Chowdhury S, Moore B, et al. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases[J]. Genome Medicine, 2021, 13(1):153.
[129] Splinter K, Adams D R, Bacino C A, et al. Effect of genetic diagnosis on patients with previously undiagnosed disease[J]. The New England Journal of Medicine, 2018, 379(22):2131-2139.
[130] Lee H N, Deignan J L, Dorrani N, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders[J]. JAMA, 2014, 312(18):1880.
[131] Wright C F, Campbell P, Eberhardt R Y, et al. Genomic diagnosis of rare pediatric disease in the United Kingdom and Ireland[J]. The New England Journal of Medicine, 2023, 388(17):1559-1571.
[132] Dewey F E, Grove M E, Pan C P, et al. Clinical interpretation and implications of whole-genome sequencing[J]. JAMA, 2014, 311(10):1035.
[133] Gorzynski J E, Goenka S D, Shafin K, et al. Ultrarapid nanopore genome sequencing in a critical care setting[J]. The New England Journal of Medicine, 2022, 386(7):700-702.
[134] Li X, Battle A, Karczewski K J, et al. Transcriptome sequencing of a large human family identifies the impact of rare noncoding variants[J]. American Journal of Human Genetics, 2014, 95(3):245-256.
[135] Li X, Kim Y, Tsang E K, et al. The impact of rare variation on gene expression across tissues[J]. Nature, 2017, 550(7675):239-243.
[136] Frésard L, Smail C, Ferraro N M, et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts[J]. Nature Medicine, 2019, 25(6):911-919.
[137] Ferraro N M, Strober B J, Einson J, et al. Transcriptomic signatures across human tissues identify functional rare genetic variation[J]. Science, 2020, 369(6509):eaaz5900.
[138] Jaganathan K, Panagiotopoulou K S, McRae J F, et al. Predicting splicing from primary sequence with deep learning[J]. Cell, 2019, 176(3):535-548.e24.
[139] Mertes C, Scheller I F, Yépez V A, et al. Detection of aberrant splicing events in RNA-seq data using FRASER[J]. Nature Communications, 2021, 12(1):529.
[140] Park C Y, Zhou J, Wong A K, et al. Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk[J]. Nature Genetics, 2021, 53(2):166-173.
[141] Wen B, Zeng W F, Liao Y X, et al. Deep learning in proteomics[J]. Proteomics, 2020, 20(21/22):e1900335.
[142] Zhou X X, Zeng W F, Chi H, et al. pDeep:Predicting MS/MS spectra of peptides with deep learning[J]. Analytical Chemistry, 2017, 89(23):12690-12697.
[143] Bouwmeester R, Gabriels R, Hulstaert N, et al. DeepLC can predict retention times for peptides that carry as-yet unseen modifications[J]. Nature Methods, 2021, 18(11):1363-1369.
[144] Sinitcyn P, Richards A L, Weatheritt R J, et al. Global detection of human variants and isoforms by deep proteome sequencing[J]. Nature Biotechnology, 2023, 41(12):1776-1786.
[145] Brandes N, Goldman G, Wang C H, et al. Genomewide prediction of disease variant effects with a deep protein language model[J]. Nature Genetics, 2023, 55(9):1512-1522.
[146] Williams S A, Kivimaki M, Langenberg C, et al. Plasma protein patterns as comprehensive indicators of health[J]. Nature Medicine, 2019, 25(12):1851-1857.
[147] Mann M, Kumar C, Zeng W F, et al. Artificial intelligence for proteomics and biomarker discovery[J]. Cell Systems, 2021, 12(8):759-770.
[148] Liu N, Xiao J, Gijavanekar C, et al. Comparison of untargeted metabolomic profiling vs traditional metabolic screening to identify inborn errors of metabolism[J]. JAMA Network Open, 2021, 4(7):e2114155.
[149] Shayota B J, Donti T R, Xiao J, et al. Untargeted metabolomics as an unbiased approach to the diagnosis of inborn errors of metabolism of the non-oxidative branch of the pentose phosphate pathway[J]. Molecular Genetics and Metabolism, 2020, 131(1/2):147-154.
[150] Van Dooijeweert B, Broeks M H, Verhoeven-Duif N M, et al. Untargeted metabolic profiling in dried blood spots identifies disease fingerprint for pyruvate kinase deficiency[J]. Haematologica, 2021, 106(10):2720-2725.
[151] Koohi-Moghadam M, Wang H B, Wang Y C, et al. Predicting disease-associated mutation of metal-binding sites in proteins using a deep learning approach[J]. Nature Machine Intelligence, 2019, 1(12):561-567.
[152] Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates?[J]. Nature Reviews Drug Discovery, 2004, 3(8):711-715.
[153] Kola I, Bell J. A call to reform the taxonomy of human disease[J]. Nature Reviews Drug Discovery, 2011, 10(9):641-642.
[154] Johansson Å, Andreassen O A, Brunak S, et al. Precision medicine in complex diseases-Molecular subgrouping for improved prediction and treatment stratification[J]. Journal of Internal Medicine, 2023, 294(4):378-396.
[155] Antman E M, Loscalzo J. Precision medicine in cardiology[J]. Nature Reviews Cardiology, 2016, 13(10):591-602.
[156] Melén E, Koppelman G H, Vicedo-Cabrera A M, et al. Allergies to food and airborne allergens in children and adolescents:Role of epigenetics in a changing environment[J]. The Lancet Child & Adolescent Health, 2022, 6(11):810-819.
[157] Loos R J F, Yeo G S H. The genetics of obesity:From discovery to biology[J]. Nature Reviews Genetics, 2022, 23(2):120-133.
[158] Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes:A data-driven cluster analysis of six variables[J]. The Lancet Diabetes & Endocrinology, 2018, 6(5):361-369.
[159] Jaenisch R, Bird A. Epigenetic regulation of gene expression:How the genome integrates intrinsic and environmental signals[J]. Nature Genetics, 2003, 33(Suppl):245-254.
[160] Parreno V, Loubiere V, Schuettengruber B, et al. Transient loss of Polycomb components induces an epigenetic cancer fate[J]. Nature, 2024, 629(8012):688-696.
[161] Reichart D, Lindberg E L, Maatz H, et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies[J]. Science, 2022, 377(6606):eabo1984.
[162] Schübeler D. Function and information content of DNA methylation[J]. Nature, 2015, 517(7534):321-326.
[163] Besingi W, Johansson A. Smoke-related DNA methylation changes in the etiology of human disease[J]. Human Molecular Genetics, 2014, 23(9):2290-2297.
[164] Li C, Sun Y D, Yu G Y, et al. Integrated omics of metastatic colorectal cancer[J]. Cancer Cell, 2020, 38(5):734-747.
[165] Laaksonen R, Ekroos K, Sysi-Aho M, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol[J]. European Heart Journal, 2016, 37(25):1967-1976.
[166] Wigger L, Cruciani-Guglielmacci C, Nicolas A, et al. Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans[J]. Cell Reports, 2017, 18(9):2269-2279.
[167] Ding L L, Liu Y, Meng X, et al. Biomarker and genomic analyses reveal molecular signatures of non-cardioembolic ischemic stroke[J]. Signal Transduction and Targeted Therapy, 2023, 8(1):222.
[168] Liu Z H, Zhao Y H, Kong P Z, et al. Integrated multiomics profiling yields a clinically relevant molecular classification for esophageal squamous cell carcinoma[J]. Cancer Cell, 2023, 41(1):181-195.
[169] Abul-Husn N S, Kenny E E. Personalized medicine and the power of electronic health records[J]. Cell, 2019, 177(1):58-69.
[170] Shendure J, Findlay G M, Snyder M W. Genomic medicine-progress, pitfalls, and promise[J]. Cell, 2019, 177(1):45-57.
[171] Yurkovich J T, Evans S J, Rappaport N, et al. The transition from genomics to phenomics in personalized population health[J]. Nature Reviews Genetics, 2024, 25(4):286-302.
[172] Vockley J G, Niederhuber J E. Diagnosis and treatment of cancer using genomics[J]. BMJ, 2015, 350:h1832.
[173] Stark Z, Dolman L, Manolio T A, et al. Integrating genomics into healthcare:A global responsibility[J]. American Journal of Human Genetics, 2019, 104(1):13-20.
[174] 100, 000 Genomes Project Pilot Investigators. 100, 000 genomes pilot on rare-disease diagnosis in health carepreliminary report[J]. New England Journal of Medicine, 2021, 385(20):1868-1880.
[175] Thavaneswaran S, Rath E, Tucker K, et al. Therapeutic implications of germline genetic findings in cancer[J]. Nature Reviews Clinical Oncology, 2019, 16(6):386-396.
[176] Chakravarty D, Solit D B. Clinical cancer genomic profiling[J]. Nature Reviews Genetics, 2021, 22(8):483-501.
[177] ACMG Board of Directors. ACMG policy statement:Updated recommendations regarding analysis and reporting of secondary findings in clinical genome-scale sequencing[J]. Genetics in Medicine, 2015, 17(1):68-69.
[178] Miyazaki N, Kobayashi T, Komiya T, et al. Postoperative malignant hyperthermia confirmed by calcium-induced calcium release rate after breast cancer surgery, in which prompt recognition and immediate dantrolene administration were life-saving:A case report[J]. Journal of Medical Case Reports, 2021, 15(1):201.
[179] Narod S A, Foulkes W D. BRCA1 and BRCA2:1994 and beyond[J]. Nature Reviews Cancer, 2004, 4(9):665-676.
[180] Knudson A G Jr. Mutation and cancer:Statistical study of retinoblastoma[J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(4):820-823.
[181] Xie W, Suryaprakash S, Wu C, et al. Trends in the use of liquid biopsy in oncology[J]. Nature Reviews Drug Discovery, 2023, 22(8):612-613.
[182] Oxnard G R, Thress K S, Alden R S, et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-smallcell lung cancer[J]. Journal of Clinical Oncology, 2016, 34(28):3375-3382.
[183] Strickler J H, Loree J M, Ahronian L G, et al. Genomic landscape of cell-free DNA in patients with colorectal cancer[J]. Cancer Discovery, 2018, 8(2):164-173.
[184] Diehl F, Schmidt K, Choti M A, et al. Circulating mutant DNA to assess tumor dynamics[J]. Nature Medicine, 2008, 14(9):985-990. 
[185] Bettegowda C, Sausen M, Leary R, et al. Abstract 5606: Detection of circulating tumor DNA in early and late stage human malignancies[J]. Cancer Research, 2014, 74(19_Supplement): 5606.
[186] Nam A S, Chaligne R, Landau D A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics[J]. Nature Reviews Genetics, 2021, 22(1): 3-18.
[187] Shaffer S M, Dunagin M C, Torborg S R, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance[J]. Nature, 2017, 546(7658): 431-435.
[188] Stunnenberg H G, Hirst M. The international human epigenome consortium: A blueprint for scientific collaboration and discovery[J]. Cell, 2016, 167(5): 1145-1149.
[189] Hutter C, Zenklusen J C. The cancer genome atlas: Creating lasting value beyond its data[J]. Cell, 2018, 173(2): 283-285.
[190] Piunti A, Shilatifard A. Epigenetic balance of gene expression by Polycomb and COMPASS families[J]. Science, 2016, 352(6290): aad9780.
[191] Müller D, Gyrffy B. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer[J]. Biochimica et Biophysica Acta Reviews on Cancer, 2022, 1877(3): 188722.
[192] Pon J R, Marra M A. Driver and passenger mutations in cancer[J]. Annual Review of Pathology, 2015, 10: 25-50.
[193] Kloetgen A, Thandapani P, Tsirigos A, et al. 3D chromosomal landscapes in hematopoiesis and immunity[J]. Trends in Immunology, 2019, 40(9): 809-824.
[194] Feinberg A P, Koldobskiy M A, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression[J]. Nature Reviews Genetics, 2016, 17(5): 284-299.
[195] Wouters O J, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018[J]. JAMA, 2020, 323(9): 844-853.
[196] Ochoa D, Karim M, Ghoussaini M, et al. Human genetics evidence supports two-thirds of the 2021 FDA-approved drugs[J]. Nature Reviews Drug Discovery, 2022, 21(8): 551.
[197] Nelson M R, Tipney H, Painter J L, et al. The support of human genetic evidence for approved drug indications[J]. Nature Genetics, 2015, 47(8): 856-860.
[198] Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data [J]. Nature, 2018, 562(7726): 203-209.
[199] Sun B B, Chiou J, Traylor M, et al. Plasma proteomic associations with genetics and health in the UK Biobank[J]. Nature, 2023, 622(7982): 329-338.
[200] Dewey F E, Gusarova V, Dunbar R L, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease[J]. The New England Journal of Medicine, 2017, 377(3): 211-221.
[201] Ozen A, Comrie W A, Ardy R C, et al. CD55 deficiency, early-onset protein-losing enteropathy, and thrombosis[J]. The New England Journal of Medicine, 2017, 377(1): 52-61.
[202] O'Brien S G, Guilhot F, Larson R A, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia[J]. The New England Journal of Medicine, 2003, 348(11): 994-1004.
[203] 武士华. 药物基因组学研究发展和前景分析[J]. 军事医学科学院院刊, 2002, 26(3): 218-221.
[204] Sanseau P, Agarwal P, Barnes M R, et al. Use of genome-wide association studies for drug repositioning [J]. Nature Biotechnology, 2012, 30(4): 317-320.
[205] Okada Y, Wu D, Trynka G, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery [J]. Nature, 2014, 506(7488): 376-381.
[206] Abida W, Armenia J, Gopalan A, et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making[J]. JCO Precision Oncology, 2017, 2017: PO.17.00029.
[207] Tardif J C, Kouz S, Waters D D, et al. Efficacy and safety of low-dose colchicine after myocardial infarction [J]. The New England Journal of Medicine, 2019, 381(26): 2497-2505.
[208] Opstal T S J, Hoogeveen R M, Fiolet A T L, et al. Colchicine attenuates inflammation beyond the inflammasome in chronic coronary artery disease: A LoDoCo2 proteomic substudy[J]. Circulation, 2020, 142(20): 1996-1998.
[209] Yarmolinsky J, Bull C J, Vincent E E, et al. Association between genetically proxied inhibition of HMGCoA reductase and epithelial ovarian cancer[J]. JAMA, 2020, 323(7): 646-655.
[210] Pushpakom S, Iorio F, Eyers P A, et al. Drug repurposing: Progress, challenges and recommendations[J]. Nature Reviews Drug Discovery, 2019, 18(1): 41-58.
[211] Iorio F, Rittman T, Ge H, et al. Transcriptional data: A new gateway to drug repositioning? [J]. Drug Discovery Today, 2013, 18(7/8): 350-357.
[212] Lamb J, Crawford E D, Peck D, et al. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease[J]. Science, 2006, 313(5795): 1929-1935.
[213] Subramanian A, Narayan R, Corsello S M, et al. A next generation connectivity map: L1000 platform and the first 1, 000, 000 profiles[J]. Cell, 2017, 171(6): 1437- 1452.e17.
[214] Wei G, Twomey D, Lamb J, et al. Gene expressionbased chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance[J]. Cancer Cell, 2006, 10(4): 331-342.
[215] Laukkanen S, Veloso A, Yan C, et al. Therapeutic targeting of LCK tyrosine kinase and mTOR signaling in T-cell acute lymphoblastic leukemia[J]. Blood, 2022, 140(17): 1891-1906.
[216] Blackburn J S, Liu S L, Wilder J L, et al. Clonal evolution enhances leukemia-propagating cell frequency in T cell acute lymphoblastic leukemia through Akt/ mTORC1 pathway activation[J]. Cancer Cell, 2014, 25(3): 366-378.
[217] Pham T H, Qiu Y, Zeng J C, et al. A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing[J]. Nature Machine Intelligence, 2021, 3(3): 247-257.
[218] Schork N J. Personalized medicine: Time for one-person trials[J]. Nature, 2015, 520(7549): 609-611.
[219] Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: Prospective analysis of 18820 patients[J]. BMJ, 2004, 329(7456): 15-19.
[220] Iorio F, Knijnenburg T A, Vis D J, et al. A landscape of pharmacogenomic interactions in cancer[J]. Cell, 2016, 166(3): 740-754.
[221] Ghandi M, Huang F W, Jané-Valbuena J, et al. Nextgeneration characterization of the Cancer Cell Line Encyclopedia[J]. Nature, 2019, 569(7757): 503-508.
[222] Yingtaweesittikul H, Wu J X, Mongia A, et al. CREAMMIST: An integrative probabilistic database for cancer drug response prediction[J]. Nucleic Acids Research, 2023, 51(D1): D1242-D1248.
[223] Virani S S, Alonso A, Aparicio H J, et al. Heart disease and stroke statistics-2021 update: A report from the American heart association[J]. Circulation, 2021, 143(8): e254-e743.
[224] Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients[J]. BMJ-British Medical Journal, 2002, 324(7329): 71-86.
[225] Diener H C, Bogousslavsky J, Brass L M, et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): Randomised, doubleblind, placebo-controlled trial[J]. Lancet, 2004, 364(9431): 331-337.
[226] Bhatt D L, Fox K A A, Hacke W, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events[J]. The New England Journal of Medicine, 2006, 354(16): 1706-1717.
[227] Johnston S C, Easton J D, Farrant M, et al. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA [J]. The New England Journal of Medicine, 2018, 379(3): 215-225.
[228] Wang Y J, Meng X, Wang A X, et al. Ticagrelor versus clopidogrel in CYP2C19 loss-of-function carriers with stroke or TIA[J]. The New England Journal of Medicine, 2021, 385(27): 2520-2530.
[229] Villiger L, Joung J, Koblan L, et al. CRISPR technologies for genome, epigenome and transcriptome editing [J]. Nature Reviews Molecular Cell Biology, 2024, 25(6): 464-487.
[230] Nissen S E, Wolski K, Watts G F, et al. Single ascending and multiple-dose trial of zerlasiran, a short interfering RNA targeting lipoprotein(a): A randomized clinical trial[J]. JAMA, 2024, 331(18): 1534-1543.
[231] 张思思, 陈旭, 陈婷婷, 等. GSA-Human: 人类遗传资源数据管理的公共系统[J]. 遗传, 2021, 43(10): 988- 993.
[232] Price W N, Cohen I G. Privacy in the age of medical big data[J]. Nature Medicine, 2019, 25(1): 37-43.
[233] Chen G B, Liu S Y, Zhang L, et al. Building and sharing medical cohorts for research[J]. Innovation (Cambridge (Mass)), 2024, 5(3): 100623.