[1] 滕吉文, 王玉辰, 司芗, 等. 煤炭、煤层气多元转型是中国化石能源勘探开发与供需之本[J]. 科学技术与工程, 2021, 21(22):9169-9193.
[2] 自然资源部. 中国矿产资源报告2022[R/OL].[2023-09-18]. https://www.mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/202209/t20220921_2759600.html.
[3] 康宇, 张秀慧. 瓦斯制甲醇技术研究与安全性评价[J]. 中外企业家, 2018(31):132.
[4] 黄学敏, 郭旭青, 李飞, 等. 温和条件下甲烷直接催化制甲醇研究进展[J]. 天然气化工(C1化学与化工), 2020, 45(4):117-122.
[5] Liu W M, Li L, Lin S X, et al. Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming[J]. Journal of Energy Chemistry, 2022, 65:34-47.
[6] Ravi M, Sushkevich V L, Knorpp A J, et al. Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites[J]. Nature Catalysis, 2019, 2(6):485-494.
[7] 王玉, 孙兰兰, 武光军, 等. 甲烷选择氧化制甲醇研究进展[J]. 化学反应工程与工艺, 2021, 37(6):555-575.
[8] Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker[J]. Frontiers in Microbiology, 2015, 6:1346.
[9] Alsayed A, Fergala A, Eldyasti A. Sustainable biogas mitigation and value-added resources recovery using methanotrophs intergrated into wastewater treatment plants[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(2):351-393.
[10] Kalyuzhnaya M G, Puri A W, Lidstrom M E. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015, 29:142-152.
[11] Pfluger A R, Wu W M, Pieja A J, et al. Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions[J]. Bioresource Technology, 2011, 102(21):9919-9926.
[12] Hur D H, Na J G, Lee E Y. Highly efficient bioconversion of methane to methanol using a novel type I Methylomonassp. DH-1 newly isolated from brewery waste sludge[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(2):311-318.
[13] Kim H J, Huh J, Kwon Y W, et al. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains[J]. Nature Catalysis, 2019, 2(4):342-353.
[14] Raynes S, Shah M A, Taylor R A. Direct conversion of methane to methanol with zeolites:Towards understanding the role of extra-framework d-block metal and zeolite framework type[J]. Dalton Transactions, 2019, 48(28):10364-10384.
[15] Sazinsky M H, Lippard S J. Methane monooxygenase:functionalizing methane at iron and copper[M]//Kroneck P, Sosa T M. Sustaining Life on Planet Earth:Metalloenzymes Mastering Dioxygen and Other Chewy Gases. Cham:Springer, 2015:205-256.
[16] Koo C W, Tucci F J, He Y, et al. Recovery of particulate methane monooxygenase structure and activity in a lipid bilayer[J]. Science, 2022, 375(6586):1287-1291.
[17] Park D, Lee J. Biological conversion of methane to methanol[J]. Korean Journal of Chemical Engineering, 2013, 30(5):977-987.
[18] Duan C H, Luo M F, Xing X H. High-rate conversion of methane to methanol by methylosinus trichosporium OB3b[J]. Bioresource Technology, 2011, 102(15):7349-7353.
[19] Ren J, Lee H M, Thai T D, et al. Identification of a cytosine methyltransferase that improves transformation efficiency in Methylomonas sp. DH-1[J]. Biotechnol Biofuels, 2020, doi:10.1186/s13068-020-01846-1.
[20] Nguyen A, Hwang I, Lee O, et al. Functional analysis of methylomonas sp. DH-1 genome as a promising biocatalyst for bioconversion of methane to valuable chemicals[J]. Catalysts, 2018, 8(3):117.
[21] Patel S K S, Jeong J H, Mehariya S, et al. Production of methanol from methane by encapsulated methylosinus sporium[J]. Journal of Microbiology and Biotechnology, 2016, 26(12):2098-2105.
[22] Chen Y Y, Ishikawa M, Hori K. A novel inverse membrane bioreactor for efficient bioconversion from methane gas to liquid methanol using a microbial gas-phase reaction[J]. Biotechnol Biofuels, 2023, doi:10.1186/s13068-023-02267-6.
[23] 高教琪, 周雍进. 甲醇生物转化的机遇与挑战[J]. 合成生物学, 2020, 1(2):158-173.
[24] Alvarez-Galvan M C, Mota N, Ojeda M, et al. Direct methane conversion routes to chemicals and fuels[J]. Catalysis Today, 2011, 171(1):15-23.
[25] Zhang Q J, He D H, Li J L, et al. Comparatively high yield methanol production from gas phase partial oxidation of methane[J]. Applied Catalysis A:General, 2002, 224(1-2):201-207.
[26] Gesser H D, Hunter N R, Prakash C B. The direct conversion of methane to methanol by controlled oxidation[J]. Chemical Reviews, 1985, 85(4):235-244.
[27] Foulds G A, Gray B F. Homogeneous gas-phase partial oxidation of methane to methanol and formaldehyde[J]. Fuel Processing Technology, 1995, 42(2-3):129-150.
[28] Brown M J, Parkyns N D. Progress in the partial oxidation of methane to methanol and formaldehyde[J]. Catalysis Today, 1991, 8(3):305-335.
[29] Holmen A. Direct conversion of methane to fuels and chemicals[J]. Catalysis Today, 2009, 142(1-2):2-8.
[30] Burch R, Squire G D, Tsang S C. Direct conversion of methane into methanol[J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1989, 85(10):3561.
[31] Gesser H D. The direct conversion of methane ro methanol by controlled oxidation[C]//VI International Symposium on Alcohol Fuels Technology. Washington, D. C.:American Chemical Society, 1984.
[32] Arutyunov V S. Recent eesults on fast flow gas-phase partial oxidation of lower alkanes[J]. Journal of Energy Chemistry, 2004, 13(1):10-22.
[33] 张昕, 贺德华, 张启俭, 等. 甲烷气相均相选择氧化合成甲醇[J]. 石油化工, 2003, 32(3):195-199.
[34] Otsuka K, Takahashi R, Amakawa K, et al. Partial oxidation of light alkanes by NOx in the gas phase[J]. Catalysis Today, 1998, 45(1-4):23-28.
[35] Teng Y H, Yamaguchi Y, Takemoto T, et al. Enhancement effects of methanol on the reactivity for methane partial oxidation in the gas phase reaction of CH4-O2-NO2[J]. Chemical Communications, 2000(5):371-372.
[36] Periana R A, Taube D J, Evitt E R, et al. A mercurycatalyzed, high-yield system for the oxidation of methane to methanol[J]. Science, 1993, 259(5093):340-343.
[37] Periana R A, Taube D J, Gamble S, et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative[J]. Science, 1998, 280(5363):560-564.
[38] 徐锋, 吴扬, 朱丽华. Pt(bipy)Cl2催化低浓度瓦斯液相部分氧化制甲醇[J]. 辽宁石油化工大学学报, 2016, 36(6):1-4.
[39] 王克, 汪啸, 宋术岩. 甲烷直接催化氧化制备甲醇近期研究进展[J]. 应用化学, 2022, 39(4):540-558.
[40] Gretz E, Oliver T F, Sen A. Carbon-hydrogen bond activation by electrophilic transition-metal compounds. Palladium(II)-mediated oxidation of arenes and alkanes including methane[J]. Journal of the American Chemical Society, 1987, 109(26):8109-8111.
[41] 李崇, 陈立宇, 张瑾, 等. 醋酸与磷钨钼酸混合溶剂中甲烷部分氧化研究[J]. 化学工程, 2010, 38(7):58-61.
[42] Zhang L, Sun Z X, Lang J Y, et al. Direct conversion of methane to oxygenates catalyzed by iron(III) chloride in water at near ambient temperature[J]. International Journal of Energy Research, 2021, 45(2):2581-2592.
[43] Lieberman R L, Rosenzweig A C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane[J]. Nature, 2005, 434(7030):177-182.
[44] Balasubramanian R, Smith S M, Rawat S, et al. Oxidation of methane by a biological dicopper centre[J]. Nature, 2010, 465(7294):115-119.
[45] Wang V C C, Maji S M, Chen P P Y, et al. Alkane oxidation:Methane monooxygenases, related enzymes, and their biomimetics[J]. Chemical Reviews, 2017, 117(13):8574-8621.
[46] Tinberg C E, Lippard S J. Dioxygen activation in soluble methane monooxygenase[J]. Accounts of Chemical Research, 2011, 44(4):280-288.
[47] Ayodele O B. Structure and reactivity of ZSM-5 supported oxalate ligand functionalized nano-Fe catalyst for low temperature direct methane conversion to methanol[J]. Energy Conversion and Management, 2016, 126:537-547.
[48] Ágnes S, Li G N, Gascon J, et al. Mechanistic complexity of methane oxidation with H2O2 by single-site Fe/ZSM-5 catalyst[J]. ACS Catalysis, 2018, 8(9):7961-7972.
[49] Osadchii D Y, Olivos-Suarez A I, Szécsényi Á, et al. Isolated Fe sites in metal organic frameworks catalyze the direct conversion of methane to methanol[J]. ACS Catalysis, 2018, 8(6):5542-5548.
[50] Cui X J, Li H B, Wang Y, et al. Room-temperature methane conversion by graphene-confined single iron atoms[J]. Chem, 2018, 4(8):1902-1910.
[51] Xiao P P, Wang Y, Nishitoba T, et al. Selective oxidation of methane to methanol with H2O2 over an Fe-MFI zeolite catalyst using sulfolane solvent[J]. Chemical Communications, 2019, 55(20):2896-2899.
[52] Liu C C, Mou C Y, F Yu S S, et al. Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure[J]. Energy & Environmental Science, 2016, 9(4):1361-1374.
[53] Shavi R, Hiremath V, Seo J G. Radical-initiated oxidative conversion of methane to methanol over metallic iron and copper catalysts[J]. Molecular Catalysis, 2018, 445:232-239.
[54] Hammond C, Forde M M, Ab Rahim M H, et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5[J]. Angewandte Chemie, 2012, 51(21):5129-5133.
[55] Fang Z H, Murayama H, Zhao Q, et al. Selective mild oxidation of methane to methanol or formic acid on FeMOR catalysts[J]. Catalysis Science & Technology, 2019, 9(24):6946-6956.
[56] Xu J, Armstrong R D, Shaw G, et al. Continuous selective oxidation of methane to methanol over Cu-and Femodified ZSM-5 catalysts in a flow reactor[J]. Catalysis Today, 2016, 270:93-100.
[57] Kwon Y, Kim T Y, Kwon G, et al. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion[J]. Journal of the American Chemical Society, 2017, 139(48):17694-17699.
[58] Tang Y, Li Y T, Fung V, et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions[J]. Nature Communications, 2018, 9:1231.
[59] Liu H A, Kang L L, Wang H A, et al. Ru single-atom catalyst anchored on sulfated zirconia for direct methane conversion to methanol[J]. Chinese Journal of Catalysis, 2023, 46:64-71.
[60] Zhao Q, Liu B, Xu Y B, et al. Insight into the active site and reaction mechanism for selective oxidation of methane to methanol using H2O2 on a Rh1/ZrO2 catalyst[J]. New Journal of Chemistry, 2020, 44(4):1632-1639.
[61] Wen J H, Guo D, Wang G C. Structure-sensitivity of direct oxidation methane to methanol over Rhn/ZrO2-x (101) (n=1, 4, 10) surfaces:A DFT study[J]. Applied Surface Science, 2021, 555:149690.
[62] Qi G D, Davies T E, Nasrallah A, et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2[J]. Nature Catalysis, 2022, 5(1):45-54.
[63] Serra-Maia R, Michel F M, Kang Y J, et al. Decomposition of hydrogen peroxide catalyzed by AuPd nanocatalysts during methane oxidation to methanol[J]. ACS Catalysis, 2020, 10(9):5115-5123.
[64] Sajith P K, Staykov A, Yoshida M, et al. Theoretical study of the direct conversion of methane to methanol using H2O2 as an oxidant on Pd and Au/Pd surfaces[J] The Journal of Physical Chemistry C, 2020, 124(24):13231-13239.
[65] Yan Y, Chen C L, Zou S H, et al. High H2O2 utilization promotes selective oxidation of methane to methanol at low temperature[J]. Frontiers in Chemistry, 2020, 8:252.
[66] Agarwal N, Freakley S J, Mcvicker R U, et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions[J]. Science, 2017, 358(6360):223-227.
[67] Mcvicker R, Agarwal N, Freakley S J, et al. Low temperature selective oxidation of methane using gold-palladium colloids[J]. Catalysis Today, 2020, 342:32-38.
[68] Dummer N F, Willock D J, He Q A, et al. Methane oxidation to methanol[J]. Chemical Reviews, 2023, 123(9):6359-6411.
[69] Williams C, Carter J H, Dummer N F, et al. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization[J]. ACS Catalysis, 2018, 8(3):2567-2576.
[70] Ab Rahim M H, Forde M M, Jenkins R L, et al. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles[J]. Angewandte Chemi, 2013, 52(4):1280-1284.
[71] Rahim M H A, Armstrong R D, Hammond C, et al. Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts[J]. Catalysis Science & Technology, 2016, 6(10):3410-3418.
[72] Jin Z, Wang L, Zuidema E, et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol[J]. Science, 2020, 367(6474):193-197.
[73] He Y L, Luan C H, Fang Y A, et al. Low-temperature direct conversion of methane to methanol over carbon materials supported Pd-Au nanoparticles[J]. Catalysis Today, 2020, 339:48-53.
[74] Bai S X, Xu Y, Wang P T, et al. Activating and converting CH4 to CH3OH via the CuPdO2/CuO nanointerface[J]. ACS Catalysis, 2019, 9(8):6938-6944.
[75] German E D, Sheintuch M. Predicting CH4 dissociation kinetics on metals:Trends, sticking coefficients, H tunneling, and kinetic isotope effect[J]. The Journal of Physical Chemistry C, 2013, 117(44):22811-22826.
[76] Bai S X, Yao Q, Xu Y, et al. Strong synergy in a lichenlike RuCu nanosheet boosts the direct methane oxidation to methanol[J]. Nano Energy, 2020, 71:104566.
[77] Knops-Gerrits P P, Goddard W A III. Methane partial oxidation in iron zeolites:theory versus experiment[J]. Journal of Molecular Catalysis A:Chemical, 2001, 166(1):135-145.
[78] Hall J N, Bollini P. Low-temperature, ambient pressure oxidation of methane to methanol over every tri-iron node in a metal-organic framework material[J]. Chemistry-A European Journal, 2020, 26(70):16639-16643.
[79] Roongcharoen T, Impeng S, Kungwan N, et al. Revealing the effect of N-content in Fe doped graphene on its catalytic performance for direct oxidation of methane to methanol[J]. Applied Surface Science, 2020, 527:146833.
[80] Dasireddy V D B C, Hanzel D, Bharuth-Ram K, et al. The effect of oxidant species on direct, non-syngas conversion of methane to methanol over an FePO 4 catalyst material[J]. RSC Advances, 2019, 9(53):30989-31003.
[81] Kulkarni A R, Zhao Z J, Siahrostami S, et al. Cation-exchanged zeolites for the selective oxidation of methane to methanol[J]. Catalysis Science & Technology, 2018, 8(1):114-123.
[82] Park M B, Ahn S H, Mansouri A, et al. Comparative study of diverse copper zeolites for the conversion of methane into methanol[J]. ChemCatChem, 2017, 9(19):3705-3713.
[83] Ikuno T, Zheng J A, Vjunov A, et al. Methane oxidation to methanol catalyzed by Cu-oxo clusters stabilized in NU-1000 metal-organic framework[J]. Journal of the American Chemical Society, 2017, 139(30):10294-10301.
[84] Le H V, Parishan S, Sagaltchik A, et al. Stepwise methane-to-methanol conversion on CuO/SBA-15[J]. Chemistry -A European Journal, 2018, 24(48):12592-12599.
[85] Li Y, Liu N, Dai C N, et al. Synergistic effect of neighboring Fe and Cu cation sites boosts FenCum-BEA activity for the continuous direct oxidation of methane to methanol[J]. Catalysts, 2021, 11(12):1444.
[86] Bunting R J, Thompson J, Hu P. The mechanism and ligand effects of single atom rhodium supported on ZSM-5 for the selective oxidation of methane to methanol[J]. Physical Chemistry Chemical Physics, 2020, 22(20):11686-11694.
[87] Kye S H, Park H S, Zhang R Q, et al. Partial oxidation of methane to methanol by isolated Pt catalyst supported on a CeO 2 nanoparticle[J]. The Journal of Chemical Physics, 2020, 152(5):054715.
[88] Yang L, Huang J X, Ma R, et al. Metal-organic framework-derived IrO 2/CuO catalyst for selective oxidation of methane to methanol[J]. ACS Energy Letters, 2019, 4(12):2945-2951.
[89] Barona M, Snurr R Q. Exploring the tunability of trimetallic MOF nodes for partial oxidation of methane to methanol[J]. ACS Applied Materials & Interfaces, 2020, 12(25):28217-28231.
[90] Yuan J Y, Zhang W H, Li X X, et al. A high performance catalyst for methane conversion to methanol:graphene supported single atom Co[J]. Chemical Communications, 2018, 54(18):2284-2287.
[91] Sharma R, Poelman H, Marin G B, et al. Approaches for selective oxidation of methane to methanol[J]. Catalysts, 2020, 10(2):194.
[92] Lustemberg P G, Palomino R M, Gutiérrez R A, et al. Direct conversion of methane to methanol on Ni-ceria surfaces:Metal-support interactions and water-enabled catalytic conversion by site blocking[J]. Journal of the American Chemical Society, 2018, 140(24):7681-7687.
[93] Arminio-Ravelo J A, Escudero-Escribano M. Strategies towardthe sustainable electrochemical oxidation of methane to methanol[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 30:100489.
[94] Ogura K, Migita C T, Fujita M. Conversion of methane to oxygen-containing compounds by the photochemical reaction[J]. Industrial & Engineering Chemistry Research, 1988, 27(8):1387-1390.
[95] López-Martín A, Caballero A, Colón G. Structural and surface considerations on Mo/ZSM-5 systems for methane dehydroaromatization reaction[J]. Molecular Catalysis, 2020, 486:110787.
[96] Tian Y D, Piao L Y, Chen X B. Research progress on the photocatalytic activation of methane to methanol[J]. Green Chemistry, 2021, 23(10):3526-3541.
[97] López H H, Martínez A. Selective photo-assisted oxidation of methane into formaldehyde on mesoporous VOx/SBA-15 catalysts[J]. Catalysis Letters, 2002, 83(1):37-41.
[98] Tahir M B, Nabi G, Rafique M, et al. Nanostructuredbased WO 3 photocatalysts:Recent development, activity enhancement, perspectives and applications for wastewater treatment[J]. International Journal of Environmental Science and Technology, 2017, 14(11):2519-2542.
[99] Yuniar G, Saputera W H, Sasongko D, et al. Recent advances in photocatalytic oxidation of methane to methanol[J]. Molecules, 2022, 27(17):5496.
[100] Taylor C E, Noceti R P. New developments in the photocatalytic conversion of methane to methanol[J]. Catalysis Today, 2000, 55(3):259-267.
[101] Hameed A, Ismail I M I, Aslam M, et al. Photocatalytic conversion of methane into methanol:Performance of silver impregnated WO3[J]. Applied Catalysis A:General, 2014, 470:327-335.
[102] Yang J A, Hao J Y, Wei J P, et al. Visible-light-driven selective oxidation of methane to methanol on amorphous FeOOH coupled m-WO3[J]. Fuel, 2020, 266:117104.
[103] Zeng Y, Tang Z Y, Wu X Y, et al. Photocatalytic oxidation of methane to methanol by tungsten trioxide-supported atomic gold at room temperature[J]. Applied Catalysis B:Environmental, 2022, 306:120919.
[104] Villa K, Murcia-López S, Andreu T, et al. Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers[J]. Applied Catalysis B:Environmental, 2015, 163:150-155.
[105] Villa K, Murcia-López S, Morante J R, et al. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol[J]. Applied Catalysis B:Environmental, 2016, 187:30-36.
[106] Noceti R P, Taylor C E, D'este J R. Photocatalytic conversion of methane[J]. Catalysis Today, 1997, 33(1-3):199-204.
[107] Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1):76-80.
[108] Kessler F K, Zheng Y, Schwarz D, et al. Functional carbon nitride materials-Design strategies for electrochemical devices[J]. Nature Reviews Materials, 2017, 2:17030.
[109] Miller T S, Jorge A B, Suter T M, et al. Carbon nitrides:synthesis and characterization of a new class of functional materials[J]. Physical Chemistry Chemical Physics, 2017, 19(24):15613-15638.
[110] Martin D J, Qiu K P, Shevlin S A, et al. Highly efficient photocatalytic H2 Evolution from water using visible light and structure-controlled graphitic carbon nitride[J]. Angewandte Chemie International Edition, 2014, 53(35):9240-9245.
[111] Zhou Y Y, Zhang L, Wang W Z. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis[J]. Nature Communications, 2019, 10:506.
[112] Xie J J, Jin R X, Li A, et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species[J]. Nature Catalysis, 2018, 1(11):889-896.
[113] Song H, Meng X G, Wang S Y, et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O 2 on cocatalysts/ZnO at room temperature in water[J]. Journal of the American Chemical Society, 2019, 141(51):20507-20515.
[114] Lee B, Sakamoto Y, Hirabayashi D, et al. Direct oxidation of methane to methanol over proton conductor/metal mixed catalysts[J]. Journal of Catalysis, 2010, 271(2):195-200.
[115] Tomita A, Nakajima J, Hibino T. Direct oxidation of methane to methanol at low temperature and pressure in an electrochemical fuel cell[J]. Angewandte Chemie International Edition, 2008, 47(8):1462-1464.
[116] Kim R S, Surendranath Y. Electrochemical reoxidation enables continuous methane-to-methanol catalysis with aqueous Pt salts[J]. ACS Central Science, 2019, 5(7):1179-1186.
[117] Natinsky B S, Lu S T, Copeland E D, et al. Solution catalytic cycle of incompatible steps for ambient air oxidation of methane to methanol[J]. ACS Central Science, 2019, 5(9):1584-1590.
[118] O'Reilly M E, Kim R S, Oh S, et al. Catalytic methane monofunctionalization by an electrogenerated high-valent Pd intermediate[J]. ACS Central Science, 2017, 3(11):1174-1179.
[119] Jiang H M, Zhang L T, Han Z W, et al. Direct conversion of methane to methanol by electrochemical methods[J]. Green Energy & Environment, 2022, 7(6):1132-1142.
[120] Wang L, Liu S Y, Jiang H M, et al. Electrochemical generation of ROS in ionic liquid for the degradation of lignin model compound[J]. Journal of the Electrochemical Society, 2018, 165(11):H705-H710.