地幔柱与洋中脊三联点相互作用研究进展

展开
  • 1. 中国科学院边缘海与大洋地质重点实验室, 中国科学院南海海洋研究所,广州 511458

    2. 中国科学院大学,北京 100049

    3. 青岛职业技术学院,青岛 266555

    4. 中国-巴基斯坦地球科学研究中心, 中国科学院-巴基斯坦高等教育委员会, 巴基斯坦 伊斯兰堡 45320

林婧雪,硕士研究生,研究方向为海洋构造地质与地球动力学,电子信箱:linjingxue22@mails.ucas.ac.cn
张锦昌(通信作者),研究员,研究领域为海洋地质与地球物理,电子信箱:jzhang@scsio.ac.cn

收稿日期: 2023-09-18

  修回日期: 2024-04-12

  网络出版日期: 2024-07-10

基金资助

广东省自然科学基金杰出青年项目(2021B1515020098);

国家自然科学基金项目(4237607142306073;

广州市科技计划项目(2023A04J0189);

中国科学院项目(131551KYSB20200021Y4SL021);

广东省重点领域研发计划项目(2020B1111520001);

中国科学院南海海洋研究所自主部署项目(SCSIO2024QY02

Research progress in the interaction between mantle plume and mid-ocean ridge triple junction

Expand
  • 1.  Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese        Academy of Sciences, Guangzhou 511458, China;

    2.    University of Chinese Academy of Sciences, Beijing 100049, China;

    3.    Qingdao Technical College, Qingdao 266555, China;

    4.    China-Pakistan Joint Research Center on Earth Science, CAS-HEC, Islamabad 45320, Pakistan

Received date: 2023-09-18

  Revised date: 2024-04-12

  Online published: 2024-07-10

摘要

地幔柱和洋中脊是形成洋壳的两种重要模式,二者相互作用能够产生剧烈的岩浆活动,这也是全球大部分洋底高原的成因机制。本文基于板块交界处的三联点性质出发,针对地幔柱与洋中脊三联点相互作用这一现象,列举了一系列典型实例,并对其特征进行归纳与对比。传统上,学者通过对地幔柱与洋中脊相互作用的影响区域进行实地考察和采样,从火山构造的特征、走向、体积,以及岩浆岩的分布和化学成分特点来推测地球内部流体活动。如今计算机数值模拟技术可用来证实前人的假设和猜想,更加定量化、精确化、合理化地研究地幔柱与洋中脊相互作用。目前数值模拟使用的模型还较为简单,后续的模拟工作需要加入更多影响因素,使模型参数更加接近真实情况。以此为目标,本文补充了其他可能影响地幔柱与洋中脊相互作用模拟结果的初始条件,并强调了筛选主要影响因素的重要性,最终对这一交叉领域的研究和发展提出了设想和展望。

本文引用格式

林婧雪, 陈琰, 刘定洲, 查财财, 郑婷婷, 张锦昌 . 地幔柱与洋中脊三联点相互作用研究进展[J]. 科技导报, 0 : 1 . DOI: 10.3981/j.issn.1000-7857. 2023.09.01419

Abstract

Mantle plume and mid-ocean ridge are two fundamental ways to generate submarine magmatism and create oceanic crust. A series of mid-ocean ridge triple junction examples in global oceans are summarized and compared in terms of interaction between mantle plume and mid-ocean ridge (plume-ridge interaction), by which most oceanic plateaus are formed. Traditionally, fluid activity in the Earth's interior has been inferred from the characteristics, trends, and volumes of volcanic structures, as well as the distribution and chemical composition of magmatic rocks, by means of fieldwork and sampling in areas affected by the plume-ridge interaction. Nowadays, computer numerical simulation technology can be used to test the assumptions and hypotheses in prior studies and make the geodynamic process of plume-ridge interaction more quantitative, precise and rational. Researchers have conducted a number of numerical simulations of plume-ridge interaction, but their models are usually simplified. Future modelling needs to incorporate more influencing factors and set the model parameters closer to the real

situation. With this goal, we suggest additional initial conditions that may affect the numerical simulation results. We also propose solutions for several potential problems in the work of plume-ridge interaction modelling.

参考文献

[1]         McKenzie D P, Morgan W J. Evolution of triple junctions: 5215[J]. Nature, 1969, 224(5215): 125–133.

[2]         李三忠, 吕海青, 侯方辉, 等. 板块三节点[J]. 海洋地质动态, 2004, 20(11): 29-39.

[3]         York D. Evolution of triple junctions[J]. Nature, 1973, 244(5415): 341–342.

[4]         孙转, 杨风丽, 张娜, 等. 三联点研究进展[J]. 地质论评, 2012, 58(6): 1133–1143.

[5]         吴树仁, 陈庆宣, 谭成轩, 等. 洋脊三联点研究进展[J]. 地质科技情报, 1999(1): 13-18.

[6]         Larson R, Searle R, Kleinrock M, et al. Roller-bearing tectonic evolution of the Juan-Fernandez microplate[J]. Nature, 1992, 356(6370): 571–576.

[7]         Lonsdale P. Structural pattern of the galapagos microplate and evolution of the galapagos triple junctions[J]. Journal of Geophysical Research-Solid     Earth and Planets, 1988, 93(B11): 13551–13574.

[8]         Nakanishi M, Winterer E L. Tectonic history of the Pacific-Farallon-Phoenix triple junction from late Jurassic to early Cretaceous: An abandoned        Mesozoic spreading system in the central Pacific Basin[J]. Journal of Geophysical Research-Solid Earth, 1998, 103(B6): 12453–12468.

[9]         Morgan W. Deep Mantle Convection Plumes and Plate Motions[J]. American Association of Petroleum Geologists Bulletin, 1972, 56(2): 203–213.

[10]      Wilson T J. A possible origin of the Hawaiian islands[J]. Canadian Journal of Physics, 1963, 41(6): 863–868.

[11]      Pirajno F. Hotspots and mantle plumes: Global intraplate tectonics, magmatism and ore Deposits[J]. Mineralogy and Petrology, 2004, 82(3–4): 183–216.

[12]      徐义刚, 何斌, 黄小龙, 等. 地幔柱大辩论及如何验证地幔柱假说[J]. 地学前缘, 2007, 14(2): 1-9.

[13]      Condie K C. Mantle Plumes and their Record in Earth History[J/OL]. Cambridge University Press, 2001: 273–302. https://doi.org/10.1017/CBO9780511810589.011

[14]    Duncan R A. The Volcanic Record of the Réunion Hotspot[J]. ODP Proceedings Scientific Results, 1990: 3–10.

[15]      Tozer B, Sandwell D T, Smith W H F, et al. Global Bathymetry and Topography at 15 Arc Sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10):     1847–1864.

[16]      Bird P. An updated digital model of plate Boundaries[J/OL]. Geochemistry, Geophysics, Geosystems, 2003, 4(3). https://doi.org/10.1029/2001GC000252

[17]      罗怡鸣, 张锦昌, 林间. 全球三大洋底高原重力异常与地壳厚度特征及对比研究[J]. 热带海洋学报, 2020, 39(4): 100-115.

[18]    Love A E H. Some problems of geodynamics[J]. Cambridge: Cambridge University Press, 1911.

[19]      郑洪伟, 李廷栋, 高锐, 等. 数值模拟在地球动力学中的研究进展[J]. 地球物理学进展, 2006, 21(2): 360-369.

[20]      Ribe N, Christensen U, Theissing J. The dynamics of plume-ridge interaction .1. ridge-centered plumes[J]. Earth and Planetary Science Letters, 1995, 134(1/2): 155–168.

[21]      Ito G, Lin J, Gable C W. Interaction of mantle plumes and migrating mid-ocean ridges: Implications for the Galápagos plume-ridge System[J]. Journal of Geophysical Research, 1997, 102(B7): 15403–15417.

[22]    Ito G, Lin J. Observational and theoretical studies of the dynamics of mantle Plume-mid-ocean ridge Interaction[J]. Reviews of Geophysics, 2003,        doi: 10.1029/2002RG000117

[23]      Müller R D, Seton M, Zahirovic S, et al. Ocean basin evolution and global-scale plate reorganization events since pangea breakup[J]. Annual Reviews, 2016,44: 107–138.

[24]      Pang F, Liao J, Ballmer M D, et al. Plume-ridge interactions: Ridgeward versus plate-drag plume Flow[J]. Solid Earth, 2023, 14(3): 353–368.

[25]      Whittaker J M, Afonso J C, Masterton S, et al. Long-term interaction between mid-ocean ridges and mantle Plumes[J]. Nature Geoscience, 2015, 8(6): 479–483.

[26]      Mittelstaedt E, Ito G, Behn M D. Mid-ocean ridge jumps associated with hotspot Magmatism[J]. Earth and Planetary Science Letters, 2008, 266(3–4): 256–270.

[27]      Mittelstaedt E, Ito G, van Hunen J. Repeat ridge jumps associated with Plume-ridge interaction, melt transport, and ridge Migration[J]. Journal of        Geophysical Research-Solid Earth, 2011, 116: B01102.

[28]      Müller R D, Roest W R, Royer J-Y. Asymmetric Sea-floor spreading caused by ridge–plume Interactions[J]. Nature, 1998, 396(6710): 455–459.

[29]      Georgen J E, Lin J. Three-dimensional passive flow and temperature structure beneath oceanic ridge-ridge-ridge triple Junctions[J]. Earth and Planetary         Science Letters, 2002, 204(1/2): 115–132.

[30]      Arnould M, Ganne J, Coltice N, et al. Northward drift of the Azores plume in the Earth’s Mantle[J]. Nature Communications, 2019, 10: 3235.

[31]      Pilidou S, Priestley K, Debayle E, et al. Rayleigh wave tomography in the North Atlantic: High resolution images of the Iceland, Azores and Eifel       mantle Plumes[J]. Lithos, 2005, 79(3–4): 453–474.

[32]      Ito G, Lin J. Oceanic spreading center hotspot interactions-constraints from along-isochron bathymetric and gravity-anomalies[J]. Geology, 1995,        23(7): 657–660.

[33]      Moreira M, Geoffroy L, Pozzi J P. Magmatic flow in Azores hot spot dykes: Preliminary results with anisotropy of magnetic susceptibility (AMS) in    San Jorge Island[J]. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et Des Planetes, 1999, 329(1): 15–22.

[34]      Gente P, Dyment J, Maia M, et al. Interaction between the Mid-Atlantic Ridge and the Azores hot spot during the last 85 Myr: Emplacement and rifting         of the hot spot-derived Plateaus[J]. Geochemistry Geophysics Geosystems, 2003, 4: 8514.

[35]      Silveira G, Stutzmann E, Davaille A, et al. Azores hotspot signature in the upper Mantle[J]. Journal of Volcanology and Geothermal Research, 2006,    156(1/2): 23–34.

[36]      Miranda J M, Luis J F, Lourenco N, et al. Distributed deformation close to the Azores Triple “Point”[J]. Marine Geology, 2014, 355: 27–35.

[37]      Luis J F, Miranda J M, Galdeano A, et al. Constraints on the structure of the Azores spreading center from gravity Data[J]. Marine Geophysical Research, 1998, 20(3): 157–170.

[38]      Stracke A, Genske F, Berndt J, et al. Ubiquitous Ultra-depleted domains in Earth’s Mantle[J]. Nature Geoscience, 2019, 12(10): 851–855.

[39]      Yu D M, Fontignie D, Schilling J G. Mantle Plume-ridge interactions in the Central North Atlantic: A Nd isotope study of Mid-Atlantic Ridge basalts   from 30 degrees N to 50 degrees N[J]. Earth and Planetary Science Letters, 1997, 146(1/2): 259–272.

[40]      Shorttle O, Maclennan J, Jones S M. Control of the symmetry of Plume-ridge interaction by spreading ridge Geometry[J]. Geochemistry Geophysics    Geosystems, 2010, 11: Q0AC05.

[41]      Leroex A, Dick H, Erlank A, et al. Geochemistry, Mineralogy and Petrogenesis of Lavas Erupted Along the Southwest Indian Ridge Between the         Bouvet Triple Junction and 11-Degrees East[J]. Journal of Petrology, 1983, 24(3): 267–318.

[42]      Georgen J E, Lin J, Dick H J B. Evidence from Gravity Anomalies for Interactions of the Marion and Bouvet Hotspots with the Southwest Indian Ridge:        Effects of Transform Offsets[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 283–300.

[43]      余星, 迪克·亨利, 李小虎, 等. 西南印度洋中脊地质构造特征及其地球动力学意义[J]. 地球物理学报, 2020, 63(10): 3585-3603.

[44]      李伟, 金振民, 陶春辉. 西南印度洋洋盆演化和岩浆地球化学印迹[J]. 沉积与特提斯地质, 2021, 41(2): 218-231.

[45]      李江海, 张华添, 李洪林, 等. 热点作用背景下的洋中脊跃迁和扩展作用:印度洋盆地张开过程探讨[J]. 高校地质学报, 2016, 22(1): 74-80.

[46]      Searle R, Francheteau J. Morphology and Tectonics of the Galapagos Triple Junction[J]. Marine Geophysical Research, 1986, 8(2): 95–129.

[47]      Canales J P, Ito G, Detrick R S, et al. Crustal Thickness along the Western Galapagos Spreading Center and the Compensation of the Galapagos Hotspot Swell[J]. Earth and Planetary Science Letters, 2002, 203(1): 311–327.

[48]      Demets C, Gordon R, Argus D, et al. Effect of Recent Revisions to the Geomagnetic Reversal Time-Scale on Estimates of Current Plate Motions[J].     Geophysical Research Letters, 1994, 21(20): 2191–2194.

[49]      Sinton J, Detrick R, Canales J P, et al. Morphology and Segmentation of the Western Galapagos Spreading Center, 90.5 Degrees-98 Degrees W: Plume-Ridge Interaction at an Intermediate Spreading Ridge[J]. Geochemistry, Geophysics, Geosystems, 2003, 4: 8515.

[50]      Smith D K, Schouten H, Montesi L, et al. The Recent History of the Galapagos Triple Junction Preserved on the Pacific Plate[J]. Earth and Planetary   Science Letters, 2013, 371: 6–15.

[51]      Hey R, Johnson G L, Lowrie A. Recent plate motion in the Galapagos Area[J]. Geological Society of America Bulletin, 1977, 88(10): 1385–1403.

[52]      Dunn R A, Toomey D R, Solomon S C. Three-Dimensional Seismic Structure and Physical Properties of the Crust and Shallow Mantle beneath the East         Pacific Rise at 9 Degrees 30’N[J]. Journal of Geophysical Research-Solid Earth, 2000, 105(B10): 23537–23555.

[53]      Boddupalli B, Canales J P. Distribution of crustal melt bodies at the hot spot-influenced section of the galapagos spreading centre from seismic reflection images[J]. Geophysical Research Letters, 2019, 46(9): 4664–4673.

[54]      Detrick R S, Sinton J M, Ito G, et al. Correlated Geophysical, Geochemical, and Volcanological Manifestations of Plume-Ridge Interaction along the   Galapagos Spreading Center[J]. Geochemistry, Geophysics, Geosystems, 2002, 3: 8501.

[55]      Wilson D, Hey R. History of Rift Propagation and magnetization intensity for the Cocos-Nazca spreading center[J]. Journal of Geophysical       Research-Solid Earth, 1995, 100(B6): 10041–10056.

[56]      Sager W W, Kim J, Klaus A, et al. Bathymetry of shatsky rise, northwest pacific ocean: implications for ocean plateau development at a triple    junction[J]. Journal of Geophysical Research-Solid Earth, 1999, 104(B4): 7557–7576.

[57]      Zhang J, Sager W W, Korenaga J. The Seismic Moho Structure of Shatsky Rise Oceanic Plateau, Northwest Pacific Ocean[J]. Earth and Planetary       Science Letters, 2016, 441: 143–154.

[58]      Korenaga J, Sager W W. Seismic tomography of shatsky rise by adaptive importance sampling[J]. Journal of Geophysical Research-Solid Earth,          2012, 117: B08102.

[59]      李三忠, 索艳慧, 刘博, 等. 微板块构造理论: 全球洋内与陆缘微地块研究的启示[J]. 地学前缘, 2018, 25(5): 323-356.

[60]      罗怡鸣, 张锦昌, 林间. 太平洋大塔穆火山研究进展及对巨型洋底火山成因的启示[J]. 地球物理学进展, 2019, 34(2): 781-795.

[61]      Mahoney J J, Duncan R A, Tejada M L G, et al. Jurassic-cretaceous boundary age and mid-ocean-ridge-type mantle source for Shatsky rise[J].   Geology, 2005, 33(3): 185–188.

[62]      Sager W W, Sano T, Geldmacher J. Formation and evolution of Shatsky rise Oceanic Plateau: Insights from IODP expedition 324 and recent      geophysical cruises[J]. Earth-Science Reviews, 2016, 159: 306–336.

[63]      Sano T, Shimizu K, Ishikawa A, et al. Variety and origin of magmas on shatsky rise, Northwest Pacific Ocean[J]. Geochemistry, Geophysics,     Geosystems, 2012, 13: Q08010.

[64]      陈双双, 刘嘉麒. 中太平洋山脉白垩纪响岩质碱玄岩的地球化学特征及地质意义[J]. 中国科学: 地球科学, 2018, 48(5): 595-616.

[65]      Nakanishi M, Sager W W, Klaus A. Magnetic Lineations within Shatsky Rise, Northwest Pacific Ocean: Implications for hot spot-triple junction         interaction and oceanic plateau formation[J]. Journal of Geophysical Research-Solid Earth, 1999, 104(B4): 7539–7556.

[66]      Sager W, Handschumacher D, Hilde T, et al. Tectonic evolution of the northern pacific plate and pacific-farallon-izanagi triple junction in the late        jurassic and early cretaceous (M21-M10)[J]. Tectonophysics, 1988, 155(1/4): 345–364.

[67]      Zhang J, Zhou Z, Ding M, et al. Three-dimensional mantle flow and temperature structure beneath the shatsky rise ridge-ridge-ridge triple        junction[J]. Journal of Ocean University of China, 2021, 20(4): 857–865.

[68]      吴婷婷, 李三忠, 庞洁红, 等. IODP 324航次FMS成像测井资料处理及其在Shatsky海隆构造研究中的应用[J]. 地球科学进展, 2010, 25(7): 753         -765.

[69]      Sager W W, Huang Y, Tominaga M, et al. Oceanic plateau formation by seafloor spreading implied by tamu massif magnetic anomalies[J]. Nature Geoscience, 2019, 12(8): 661–666.

[70]      Duncan R, Richards M. Hotspots, mantle plumes, flood basalts, and true polar wander[J]. Reviews of Geophysics, 1991, 29(1): 31–50.

[71]      Richards M, Duncan R, Courtillot V. Flood basalts and hot-spot tracks-plume heads and tails[J]. Science, 1989, 246(4926): 103–107.

[72]      Richards M, Jones D, Duncan R, et al. A mantle plume initiation model for the Wrangellia flood-basalt and other oceanic plateaus[J]. Science, 1991,    254(5029): 263–267.

[73]      Sager W W, Zhang J, Korenaga J, et al. An immense shield volcano within the shatsky rise oceanic plateau, Northwest Pacific Ocean[J]. Nature Geoscience, 2013, 6(11): 976–981.

[74]      徐斐, 周祖翼. 洋底高原:了解地球内部的窗口[J]. 地球科学进展, 2003, 18(5): 745-752.

[75]      Zhang J, Luo Y, Chen J. Oceanic Plateau Formation Implied by Ontong Java Plateau, Kerguelen Plateau and Shatsky Rise[J]. Journal of Ocean University    of China, 2020, 19(2): 351–360.

[76]      Zhang J, Chen J. Geophysical Implications for the formation of the Tamu Massif-the Earth’s Largest Single Volcano-within the Shatsky Rise in the      Northwest Pacific Ocean[J]. Science Bulletin, 2017, 62(1): 69–80.

[77]      Li S, Suo Y, Yu S, et al. Orientation of joints and arrangement of solid inclusions in fibrous veins in the Shatsky Rise, NW Pacific: Implications for crack‐seal mechanisms and stress Fields[J]. Geological Journal, 2016, 51(S1): 562–578.

[78]      Zhang X, Brown E L, Zhang J, et al. Magmatism of Shatsky Rise controlled by plume–ridge interaction[J]. Nature Geosciencthree-dimensional numerical models and implications for the fore, 2023, 16(11): 1061–1069.

[79]      Dordevic M, Georgen J. Dynamics of plume-triple junction interaction: Results from a Series of mation of Oceanic Plateaus[J]. Journal of Geophysical Research-Solid Earth, 2016, 121(3): 1316–1342.

[80]      张国伟, 李三忠. 西太平洋—北印度洋及其洋陆过渡带:古今演变与论争[J]. 海洋地质与第四纪地质, 2017, 37(4): 1-17.

[81]      Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426(6965): 405–412.

[82]      Morgan W. Rodriguez, Darwin, Amsterdam. 2nd type of hotspot island[J]. Journal of Geophysical Research, 1978, 83(NB11): 5355–5360.

[83]      Purdy G M, Kong L S L, Christeson G L, et al. Relationship between spreading rate and the seismic structure of mid-ocean ridges[J]. Nature, 1992, 355(6363): 815–817.

[84]      Schilling J, Kingsley R, Devine J. Galapagos hot spot-spreading center system .1. Spatial Petrological and Geochemical Variations(83-Degrees-W-101-Degrees-W)[J]. Journal of Geophysical Research, 1982, 87(NB7): 5593–5610.

[85]      Smith D K, Schouten H, Parnell-Turner R, et al. The evolution of seafloor spreading behind the tip of the westward propagating Cocos-Nazca    spreading center[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(6): e2020GC008957.

[86]      Georgen J E, Sankar R D. Effects of ridge geometry on mantle dynamics in an oceanic triple junction region: Implications for the Azores Plateau[J]. Earth and Planetary Science Letters, 2010, 298(1/2): 23–34

[87]      Gassmoeller R, Dannberg J, Bredow E, et al. Major influence of plume-ridge interaction, lithosphere thickness variations, and global mantle flow        on hotspot volcanism-the example of Tristan[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(4): 1454–1479.

[88]      Bredow E, Steinberger B, Gassmoller R, et al. How plume-ridge interaction shapes the crustal thickness pattern of the reunion hotspot track[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(8): 2930–2948.

[89]      Steinberger B, Bredow E, Lebedev S, et al. Widespread volcanism in the Greenland-North Atlantic region explained by the iceland plume[J]. Nature    Geoscience, 2019, 12(1): 61–68.

[90]      Bredow E, Steinberger B. Variable Melt Production Rate of the Kerguelen HotSpot Due To Long-Term Plume-Ridge Interaction[J]. Geophysical Research Letters, 2018, 45(1): 126–136..

[91]      Xue J, King S D. Geodynamic investigation of a Cretaceous superplume in the Pacific ocean[J]. Physics of the Earth and Planetary Interiors, 2016, 257: 137–148.

[92]      Braun M G, Hirth G, Parmentier E M. The effects of deep damp melting on mantle flow and melt generation beneath mid-ocean ridges[J]. Earth          and Planetary Science Letters, 2000, 176(3/4): 339–356.

[93]      Georgen J E. Mantle flow and melting beneath oceanic ridge-ridge-ridge triple junctions[J]. Earth and Planetary Science Letters, 2008, 270(3/4):         231–240.

[94]      Morrow T A, Mittelstaedt E L. Quantifying periodic variations in hotspot melt production[J]. Journal of Geophysical Research, 2021, 126(7): e2021JB021726.

文章导航

/