地幔柱与洋中脊三联点相互作用研究进展
1. 中国科学院边缘海与大洋地质重点实验室, 中国科学院南海海洋研究所,广州 511458
2. 中国科学院大学,北京 100049
3. 青岛职业技术学院,青岛 266555
4. 中国-巴基斯坦地球科学研究中心, 中国科学院-巴基斯坦高等教育委员会, 巴基斯坦 伊斯兰堡 45320
收稿日期: 2023-09-18
修回日期: 2024-04-12
网络出版日期: 2024-07-10
基金资助
广东省自然科学基金杰出青年项目(2021B1515020098);
国家自然科学基金项目(42376071,42306073);
广州市科技计划项目(2023A04J0189);
中国科学院项目(131551KYSB20200021,Y4SL021);
广东省重点领域研发计划项目(2020B1111520001);
中国科学院南海海洋研究所自主部署项目(SCSIO2024QY02)
Research progress in the interaction between mantle plume and mid-ocean ridge triple junction
1. Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Qingdao Technical College, Qingdao 266555, China;
4. China-Pakistan Joint Research Center on Earth Science, CAS-HEC, Islamabad 45320, Pakistan
Received date: 2023-09-18
Revised date: 2024-04-12
Online published: 2024-07-10
地幔柱和洋中脊是形成洋壳的两种重要模式,二者相互作用能够产生剧烈的岩浆活动,这也是全球大部分洋底高原的成因机制。本文基于板块交界处的三联点性质出发,针对地幔柱与洋中脊三联点相互作用这一现象,列举了一系列典型实例,并对其特征进行归纳与对比。传统上,学者通过对地幔柱与洋中脊相互作用的影响区域进行实地考察和采样,从火山构造的特征、走向、体积,以及岩浆岩的分布和化学成分特点来推测地球内部流体活动。如今计算机数值模拟技术可用来证实前人的假设和猜想,更加定量化、精确化、合理化地研究地幔柱与洋中脊相互作用。目前数值模拟使用的模型还较为简单,后续的模拟工作需要加入更多影响因素,使模型参数更加接近真实情况。以此为目标,本文补充了其他可能影响地幔柱与洋中脊相互作用模拟结果的初始条件,并强调了筛选主要影响因素的重要性,最终对这一交叉领域的研究和发展提出了设想和展望。
关键词: 地幔柱与洋中脊相互作用; 三联点; 数值模拟; 地幔柱; 海底扩张
林婧雪, 陈琰, 刘定洲, 查财财, 郑婷婷, 张锦昌 . 地幔柱与洋中脊三联点相互作用研究进展[J]. 科技导报, 0 : 1 . DOI: 10.3981/j.issn.1000-7857. 2023.09.01419
Mantle plume and mid-ocean ridge are two fundamental ways to generate submarine magmatism and create oceanic crust. A series of mid-ocean ridge triple junction examples in global oceans are summarized and compared in terms of interaction between mantle plume and mid-ocean ridge (plume-ridge interaction), by which most oceanic plateaus are formed. Traditionally, fluid activity in the Earth's interior has been inferred from the characteristics, trends, and volumes of volcanic structures, as well as the distribution and chemical composition of magmatic rocks, by means of fieldwork and sampling in areas affected by the plume-ridge interaction. Nowadays, computer numerical simulation technology can be used to test the assumptions and hypotheses in prior studies and make the geodynamic process of plume-ridge interaction more quantitative, precise and rational. Researchers have conducted a number of numerical simulations of plume-ridge interaction, but their models are usually simplified. Future modelling needs to incorporate more influencing factors and set the model parameters closer to the real
situation. With this goal, we suggest additional initial conditions that may affect the numerical simulation results. We also propose solutions for several potential problems in the work of plume-ridge interaction modelling.