[1] Larsen C M, Hanson T. Optimization of catenary risers[J]. Journal of Offshore Mechanics and Arctic Engineering, 1999, 121(2):90-94.
[2] Vieira L T, de S L P de Lima B, Evsukoff A G, et al. Ap-plication of genetic algorithms to the synthesis of riser configurations[C]//Proceedings of ASME 200322nd Inter-national Conference on Offshore Mechanics and Arctic Engineering. Cancun:ASME, 2009:391-396.
[3] Yang H Z, Jiang R H, Li H J. Optimization design of deepwater steel catenary risers using genetic algorithm[M]//Computational Structural Engineering. Dordrecht:Springer Netherlands, 2009:901-908.
[4] de Souza Leite Pires de Lima B, Pinheiro J B, Francisco F E N. A hybrid fuzzy/genetic algorithm for the design of offshore oil production risers[J]. International Journal for Numerical Methods in Engineering, 2005, 64(11):1459-1482.
[5] Tanaka R L, De A M C. A genetic algorithm approach to steel riser optimization[C]. 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany:2006.
[6] Rentschler M U T, Adam F, Chainho P. Design optimiza-tion of dynamic inter-array cable systems for floating off-shore wind turbines[J]. Renewable and Sustainable Ener-gy Reviews, 2019, 111:622-635.
[7] Yang H Z, Zheng W Q. Metamodel approach for reliabili-ty-based design optimization of a steel catenary riser[J]. Journal of Marine Science and Technology, 2011, 16(2):202-213.
[8] Lal M, Sebastian A, Rana Y. Steel lazy wave riser optimi-zation using artificial neural networks and genetic algo-rithm[C]//Proceedings of ASME 202140th International Conference on Ocean, Offshore and Arctic Engineering. Online:ASME 2021.
[9] Elsas J H, Casaprima N A G, Cardoso P H S, et al. Bayesian optimization of riser configurations[J]. Ocean En-gineering, 2021, 236:109402.
[10] 张起.深度学习驱动的脐带缆线型优化设计方法[D].大连:大连理工大学, 2021.
[11] Yan J, Su Q, Li R D, et al. Optimization design method of the umbilical cable global configuration based on rep-resentative fatigue conditions[J]. IEEE Journal of Ocean-ic Engineering, 2023, 48(1):188-198.
[12] Bhowmik S, Noiray G, Naik H. Riser design automation with machine learning[C]//Proceedings of Day 4 Thu, No-vember 14, 2019. Abu Dhabi:SPE, 2019:SPE-M7219-MS.
[13] Petroleum and natural gas industries:Design and opera-tion of subsea production systems-Part 5:Subsea umbili-cals:NF M87-208-5-2013. ISO 13628-5[S]. Switzer-land:International Organization for Standardization, 2013.
[14] Yang Z X, Yin X, Yan J, et al. Study on the optimiza-tion algorithm of the cross-sectional layout of an umbili-cal based on the layering strategy[J]. Ocean Engineer-ing, 2021, 232:109120.
[15] Yin X, Yang Z X, Yan J, et al. Study on the automatic optimization design of the cross-sectional layout of an umbilical with layers based on the GA-GLM[J]. Marine Structures, 2023, 88:103363.
[16] Wang L F, Shi D Y, Zhang B Y, et al. Accurate and re-al-time prediction of umbilical component layout optimi-zation based on convolutional neural network[J]. Ocean Engineering, 2023, 282:115034.
[17] Yan J, Yang Z X, Zhao P P, et al. Reliability optimiza-tion design of the steel tube umbilical cross section based on particle swarm algorithm[C]//Proceedings of ASME 201736th International Conference on Ocean, Offshore and Arctic Engineering. Trondheim:ASME, 2017.
[18] Monsalve-Giraldo J S, Cortina J P R, de Sousa F J M, et al. Hybrid Parabolic Interpolation-Artificial Neural Network Method (HPI-ANNM) for long-term extreme re-sponse estimation of steel risers[J]. Applied Ocean Re-search, 2018, 76:221-234.
[19] Zhao Y L, Dong S, Jiang F Y. Reliability analysis of mooring lines for floating structures using ANN-BN in-ference[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Mari-time Environment, 2021, 235(1):236-254.
[20] Mao Y X, Wang T Q, Duan M L. A DNN-based ap-proach to predict dynamic mooring tensions for semisubmersible platform under a mooring line failure condi-tion[J]. Ocean Engineering, 2022, 266:112767.
[21] Sivaprasad H, Lekkala M R, Latheef M, et al. Fatigue damage prediction of top tensioned riser subjected to vortex-induced vibrations using artificial neural networks[J]. Ocean Engineering, 2023, 268:113393.
[22] Guarize R, Matos N A F, Sagrilo L V S, et al. Neural networks in the dynamic response analysis of slender marine structures[J]. Applied Ocean Research, 2007, 29(4):191-198.
[23] de Pina A C, de Pina A A, Albrecht C H, et al. ANNbased surrogate models for the analysis of mooring lines and risers[J]. Applied Ocean Research, 2013, 41:76-86.
[24] de Pina A C, Albrecht C H, de Lima B S L P, et al. Wavelet network meta-models for the analysis of slen-der offshore structures[J]. Engineering Structures, 2014, 68:71-84.
[25] Yang Y, Peng T, Liao S J. Predicting future mooring line tension of floating structure by machine learning[J]. Ocean Engineering, 2023, 269:113470.
[26] da Silva V R M, Sagrilo L V S, de Araujo B S. Applied deep learning for slender marine structure dynamic anal-ysis[J]. Journal of Offshore Mechanics and Arctic Engi-neering, 2022, 144(2):021701.
[27] Yan J, Zhang Y Y, Su Q, et al. Time series prediction based on LSTM neural network for top tension response of umbilical cables[J]. Marine Structures, 2023, 91:103448.
[28] Xie Y J, Tang H S, Low Y M. Deep gated recurrent unit networks for time-domain long-term fatigue analysis of mooring lines considering wave directionality[J]. Ocean Engineering, 2023, 284:115244.
[29] Ma G, Jin C L, Wang H W, et al. Study on dynamic ten-sion estimation for the underwater soft yoke mooring sys-tem with LSTM-AM neural network[J]. Ocean Engineer-ing, 2023, 267:113287.
[30] Rezaniaiee Aqdam H, Ettefagh M M, Hassannejad R. Health monitoring of mooring lines in floating structures using artificial neural networks[J]. Ocean Engineering, 2018, 164:284-297.
[31] Sacie M, Santos M, López R, et al. Use of state-of-art machine learning technologies for forecasting offshore wind speed, wave and misalignment to improve wind tur-bine performance[J]. Journal of Marine Science and En-gineering, 2022, 10(7):938.
[32] Tay Z Y. Artificial neural network framework for predic-tion of hydroelastic response of very large floating struc-ture[J]. Applied Ocean Research, 2023, 139:103701.
[33] Saghi H, Mikkola T, Hirdaris S. A machine learning method for the evaluation of hydrodynamic performance of floating breakwaters in waves[J]. Ships and Offshore Structures, 2022, 17(7):1447-1461.
[34] 王程,张露,金东东,等.基于高通量卫星的深远海网箱智能化养殖监测系统[J].卫星应用, 2022(6):61-66.
[35] 王奕.基于雷达通信和AIS的海洋渔业智能化监管策略研究[J].中国新通信, 2023, 25(13):12-14.
[36] 邓燕,刘志芳,宫俭纯,等.海洋石油平台智能化转型升级关键技术分析[J].化工自动化及仪表, 2020, 47(4):338-340, 348.
[37] 刘红霞.深海海洋平台控制系统智能化研究[J].海洋工程装备与技术, 2019, 6(增刊1):404-408.
[38] Zhang J C, Zhao X W, Wei X. Reinforcement learningbased structural control of floating wind turbines[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2022, 52(3):1603-1613.
[39] 楼丹平,杨春华. LNG船技术发展趋势[J].船舶, 2023, 34(4):19-27.
[40] 中国制造2025-能源装备实施方案[J].中国产经, 2016(6):66-93.
[41] Peters D J H, Zimmer R A, Hein N W Jr, et al. Weight control, performance monitoring, and In-situ inspection of the TLWP[C]//Proceedings of All Days. Houston:OTC, 1990:OTC-6363-MS.
[42] 冯加果,谢彬,谢文会,等.深水浮式平台监测系统研制及应用[J].舰船科学技术, 2019, 41(5):118-121.
[43] 武文华,唐达,岳前进,等.海洋平台结构原型监测及其现场应用[C]//中国海洋工程学会第十六届中国海洋(岸)工程学术讨论会论文集(上册).南京:中国海洋学会海洋工程分会, 2013:8.
[44] Hu Z, Li X, Li J, et al. Comparative study on a jacket launching operation in South China Sea[J]. Ocean Engi-neering, 2016, 111:335-347.
[45] 何林,欧进萍.海洋平台结构损伤监测的传感器总线系统设计[J].计算机应用研究, 2006, 23(9):136-138, 159.
[46] 聂杰文.基于EMD-HHT的海洋平台结构损伤检测技术研究[D].青岛:中国海洋大学, 2014.
[47] 杨华庭.近十年来的海洋灾害与减灾[J].海洋预报, 2002, 19(1):2-8.
[48] 秦洪德.船舶运动与波浪载荷计算的非线性方法研究[D].哈尔滨:哈尔滨工程大学, 2003.
[49] 单忠伟.海流测量技术综述[J].声学与电子工程, 2011(1):1-5.
[50] Cook H H, Dopjera D E, Thethi R, et al. Riser integrity management for deepwater developments[C]//Proceed-ings of Offshore Technology Conference. Offshore Tech-nology Conference. Houston:OTC, 2006:OTC-17891-MS.
[51] Chen W, Xiong C B, Yu L N, et al. Dynamic monitoring of an offshore jacket platform based on RTK-GNSS measurement by CF-CEEMDAN method[J]. Applied Ocean Research, 2021, 115:102844.
[52] 杜宇,武文华,王延林,等.基于自容式技术的系泊缆水下监测方法[J].哈尔滨工程大学学报, 2016, 37(8):1003-1008, 1014.
[53] 韩旭亮,王世圣,谢文会,等.基于光纤传感技术的结构应力监测试验研究[J].石油矿场机械, 2021, 50(5):26-31.
[54] Ren L, Li H N, Zhou J, et al. Development of health monitoring system for ocean offshore platform with fiber bragg grating sensors[J]. International Offshore and Polar Engineering Conference, Seoul, Korea, 2005:424-428.
[55] Duan Z D, Ou J P, Zhou Z, et al. Smart sensors and inte-grated shm system for offshore structures[M]//Sensing Is-sues in Civil Structural Health Monitoring. Berlin/Hei-delberg:Springer-Verlag, 2005:269-278.
[56] Achenbach J D. Quantitative nondestructive evaluation[J]. International Journal of Solids and Structures, 2000, 37(1/2):13-27.
[57] Aindow A M, Dewhurst R J, Palmer S B, et al. Laserbased non-destructive testing techniques for the ultra-sonic characterization of subsurface flaws[J]. NDT Inter-national, 1984, 17(6):329-335.
[58] Alers G A, Burns L R. EMAT designs for special appli-cations[J]. Materials Evaluation, 1987, 45(10):1184-1189.
[59] Grandia W A, Fortunko C M. NDE applications of aircoupled ultrasonic transducers[C]//Proceedings of IEEE Ultrasonics Symposium. NJ:IEEE, 1995, 1:697-709.
[60] 崔继鹏,陈启卫,张允宁.海洋石油平台多种通信方式的应用[J].中国石油和化工标准与质量, 2021, 41(4):135-137, 140.
[61] 向景.海上平台通信系统中多网融合的实践[J].中国新技术新产品, 2019(24):27-28.
[62] 姚骥,武文华,徐海博,等.基于图像化卷积的半潜式平台响应预测[J].船舶力学, 2023, 27(5):617-626.
[63] 姚骥,武文华,于思源.基于卷积网络的浮式平台人员舒适度评价[J].哈尔滨工程大学学报, 2021, 42(1):82-88.
[64] Yu S Y, Wu W H, Xie B, et al. Extreme value predic-tion of current profiles in the South China Sea based on EOFs and the ACER method[J]. Applied Ocean Re-search, 2020, 105:102408.
[65] Yu S Y, Wu W H, Naess A. Current profile extreme pre-diction in the South China Sea based on the EOF-AC-ER method, by considering current directions[J]. Interna-tional Journal of Offshore and Polar Engineering, 2021, 31(3):275-282.
[66] Yu S Y, Wu W H, Naess A. Extreme value prediction with modified Enhanced Monte Carlo method based on tail index correction[J]. Journal of Sea Research, 2023, 192:102354.
[67] 张延涛,吕柏呈,武文华,等.基于现场实测的渤海风速特性研究[J].海洋工程, 2020, 38(1):147-153.
[68] Yao J, Wu W H. Wave height forecast method with multi-step training set extension LSTM neural network[J]. Ocean Engineering, 2022, 263:112432.
[69] Yao J, Wu W H. Extreme motion prediction and earlywarning assessment of semisubmersible platform based on deep learning method[J]. International Journal of Off-shore and Polar Engineering, 2021, 31(3):293-301.
[70] Yao J, Wu W H, Li S. Anomaly detection model of moor-ing system based on LSTM PCA method[J]. Ocean Engi-neering, 2022, 254:111350.
[71] Li S, Wu W H, Yao W A. Bayesian based updating of hull and mooring structure parameters of semi-submers-ible platforms using monitoring data[J]. Ocean Engineer-ing, 2023, 272:113865.
[72] Lyu B C, Guo C C, Wu W H, et al. Hinge joint damage identification method of soft yoke mooring system based on multibody dynamic modeling and structural monitor-ing data[J]. Marine Structures, 2020, 74:102808.
[73] Lyu B C, Wu W H. Dynamic characteristics analysis of an in-service SYMS based on long-term field monitoring[J]. Ocean Engineering, 2022, 265:112648.