[1] Xu F X, Zhang X, Zhang H. A review on functionally graded structures and materials for energy absorption[J]. Engineering Structures, 2018, 171:309-325.
[2] Saleh B, Jiang J H, Fathi R, et al. 30 Years of functional-ly graded materials:An overview of manufacturing meth-ods, applications and future challenges[J]. Composites Part B:Engineering, 2020, 201:108376.
[3] Guedes Soares C, Shenoi R A. Analysis and design of ma-rine structures[M]. London:CRC Press, 2009.
[4] Sahoo S. Laminated composite stiffened shallow spherical panels with cutouts under free vibration-A finite element approach[J]. Engineering Science and Technology, an In-ternational Journal, 2014, 17(4):247-259.
[5] Ovesy H R, Fazilati J. Buckling and free vibration finite strip analysis of composite plates with cutout based on two different modeling approaches[J]. Composite Struc-tures, 2012, 94(3):1250-1258.
[6] Natarajan S, Deogekar P S, Manickam G, et al. Hygrother-mal effects on the free vibration and buckling of laminat-ed composites with cutouts[J]. Composite Structures, 2014, 108:848-855.
[7] Fantuzzi N, Tornabene F, Viola E. Four-parameter func-tionally graded cracked plates of arbitrary shape:A GDQ-FEM solution for free vibrations[J]. Mechanics of Ad-vanced Materials and Structures, 2016, 23(1):89-107.
[8] Ansari R, Torabi J, Hassani R. A comprehensive study on the free vibration of arbitrary shaped thick functionally graded CNT-reinforced composite plates[J]. Engineering Structures, 2019, 181:653-669.
[9] Liu G R, Chen X L. A mesh-free method for static and free vibration analyses of thin plates of complicated shape[J]. Journal of Sound and Vibration, 2001, 241(5):839-855.
[10] Nguyen K D, Nguyen-Xuan H. An isogeometric finite el-ement approach for three-dimensional static and dynam-ic analysis of functionally graded material plate struc-tures[J]. Composite Structures, 2015, 132:423-439.
[11] Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39/40/41):4135-4195.
[12] Thai H T, Kim S E. A review of theories for the model-ing and analysis of functionally graded plates and shells[J]. Composite Structures, 2015, 128:70-86.
[13] Jha D K, Kant T, Singh R K. A critical review of recent research on functionally graded plates[J]. Composite Structures, 2013, 96:833-849.
[14] Carrera E, Brischetto S, Cinefra M, et al. Effects of thickness stretching in functionally graded plates and shells[J]. Composites Part B:Engineering, 2011, 42(2):123-133.
[15] Zenkour A M. Benchmark trigonometric and 3-D elastic-ity solutions for an exponentially graded thick rectangu-lar plate[J]. Archive of Applied Mechanics, 2007, 77(4):197-214.
[16] Matsunaga H. Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory[J]. Composite Structures, 2008, 82(4):499-512.
[17] Matsunaga H. Free vibration and stability of functionally graded shallow shells according to a 2D higher-order deformation theory[J]. Composite Structures, 2008, 84(2):132-146.
[18] Neves A M A, Ferreira A J M, Carrera E, et al. A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates[J]. Composite Structures, 2012, 94(5):1814-1825.
[19] Neves A M A, Ferreira A J M, Carrera E, et al. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique[J]. Composites Part B:Engineering, 2013, 44(1):657-674.
[20] Neves A M A, Ferreira A J M, Carrera E, et al. Buck-ling analysis of sandwich plates with functionally graded skins using a new quasi-3D hyperbolic sine shear defor-mation theory and collocation with radial basis functions[J]. ZAMM-Journal of Applied Mathematics and Me-chanics, 2012, 92(9):749-766.
[21] Mantari J L, Guedes Soares C. Generalized hybrid quasi-3D shear deformation theory for the static analysis of ad-vanced composite plates[J]. Composite Structures, 2012, 94(8):2561-2575.
[22] Mantari J L, Soares C G. A quasi-3D tangential shear deformation theory with four unknowns for functionally graded plates[J]. Acta Mechanica, 2015, 226(3):625-642.
[23] Thai H T, Kim S E. A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates[J]. Composite Structures, 2013, 99:172-180.
[24] Thai H T, Vo T P, Bui T Q, et al. A quasi-3D hyperbol-ic shear deformation theory for functionally graded plates[J]. Acta Mechanica, 2014, 225(3):951-964.
[25] Hebali H, Tounsi A, Houari M S A, et al. New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates[J]. Journal of Engineering Mechanics, 2014, 140(2):374-383.
[26] Bessaim A, Houari M S, Tounsi A, et al. A new higherorder shear and normal deformation theory for the static and free vibration analysis of sandwich plates with func-tionally graded isotropic face sheets[J]. Journal of Sand-wich Structures&Materials, 2013, 15(6):671-703.
[27] Bennoun M, Houari M S A, Tounsi A. A novel five-vari-able refined plate theory for vibration analysis of func-tionally graded sandwich plates[J]. Mechanics of Ad-vanced Materials and Structures, 2016, 23(4):423-431.
[28] 黎梦真.功能梯度板高阶剪切变形理论建模方法与力学特性研究[D].武汉:武汉理工大学, 2021.
[29] Van Do V N, Lee C H. Free vibration analysis of FGM plates with complex cutouts by using quasi-3D isogeo-metric approach[J]. International Journal of Mechanical Sciences, 2019, 159:213-233.
[30] Huang W H, Xue K, Li Q H. Three-dimensional solu-tion for the vibration analysis of functionally graded rect-angular plate with/without cutouts subject to general boundary conditions[J]. Materials, 2021, 14(22):7088.
[31] Yin S H, Yu T T, Bui T Q, et al. A cutout isogeometric analysis for thin laminated composite plates using level sets[J]. Composite Structures, 2015, 127:152-164.
[32] Tran L V, Abdel Wahab M, Kim S E. An isogeometric fi-nite element approach for thermal bending and buckling analyses of laminated composite plates[J]. Composite Structures, 2017, 179:35-49.
[33] Thai C H, Zenkour A M, Abdel Wahab M, et al. A sim-ple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis[J]. Composite Structures, 2016, 139:77-95.
[34] Zang Q S, Liu J, Ye W B, et al. Static and free vibration analyses of functionally graded plates based on an isogeometric scaled boundary finite element method[J]. Composite Structures, 2022, 288:115398.
[35] 钟锐,胡双卫,秦斌,等.功能梯度开孔平行四边形板的等几何振动分析[J].哈尔滨工程大学学报, 2022, 43(7):999-1005.
[36] Sun X B, Gao R X, Zhang Y H. Spectral stochastic isogeometric analysis of bending and free vibration of porous functionally graded plates[J]. Applied Mathemati-cal Modelling, 2023, 116:711-734.
[37] Yang S W, Sun X B, Cai Z Q, et al. High-precision isogeometric static bending analysis of functionally grad-ed plates using a new quasi-3D spectral displacement formulation[J]. Applied Sciences, 2023, 13(11):6412.
[38] Szilard R. Theories and applications of plate analysis:Classical, numerical and engineering methods[J]. Ap-plied Mechanics Reviews, 2004, 57(6):B32-B33.
[39] Cottrell J A, Hughes T J R, Bazilevs Y. Isogeometric analysis:Toward integration of CAD and FEA[M]. NJ, USA:John Wiley&Sons, 2009.
[40] Piegl L, Tiller W. The NURBS book[M]. Berlin, Germa-ny:Springer Science&Business Media, 1996.
[41] Cox D A, Little J, O'Shea D. Ideals, varieties, and algo-rithms:An introduction to computational algebraic geom-etry and commutative algebra[M]. Berlin:Springer Cham, 2015.
[42] Babuška I. The finite element method with penalty[J]. Mathematics of Computation, 1973, 27(122):221-228.
[43] Fernández-Méndez S, Huerta A. Imposing essential boundary conditions in mesh-free methods[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12/13/14):1257-1275.